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Abstract  

The Conflict Detection module document is a deliverable in the work package 3 “Development of 
Machine Learning (ML) modules” of the AISA project. This document is similar to other work package 
deliverables and develops a conflict detection module based on ML techniques for the AISA project.  

This work deals with monitoring tasks focusing on situational awareness. This approach applies ML 
techniques to perform predictions about separation infringements and safety metrics associated with 
the intrinsic characteristics of the separation between an aircraft pair. Herein, this work focuses on the 
concept of Situation of Interest (SI). One SI is when an aircraft pair is expected to intersect with a 
horizontal separation lower than a pre-defined separation and infringe the vertical separation minima. 
The safety metrics are the Minimum Distance, the distance and the time to reach the Minimum 
Distance for each aircraft pair. Moreover, it has been developed two approaches with similar roles of 
the Air Traffic Controller’s (ATCO) team. The Static mode focuses on planner ATCO. This mode predicts 
SI and their safety metrics when an aircraft pierces into the airspace with the aircraft located within 
the airspace. The Dynamic mode focuses on tactical ATCO. This mode predicts SI and their safety 
metrics throughout the aircraft's evolution within the airspace, and it receives the 4DT prediction of 
the aircraft within the airspace.  

ADS-B trajectories have been extracted from The OpenSky Network and constituted the basis for the 
ML database. This database of ADS-B trajectories has also been used as 4DT predictions for the 
Dynamic mode. Current ADS-B trajectories do not provide SI or conflicts. Then, it has been necessary 
to build a customised database based on temporarily modified trajectories that constituted enough SI.  

15 ML algorithms for classification and 17 ML algorithms for regression have been assessed. Results 
confirm ensemble methods are the most suitable for classification and regression algorithms. Random 
forest is the best ML model for classifying aircraft pairs as SI and their probability. Extra trees and 
Extreme Gradient Boosting were the best models for predicting numerical values of the safety metrics. 
Therefore, independent ML models perform predictions about conflict detection based on ADS-B data. 
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Purpose 

This deliverable is based on the work package (WP) 3 Task 3.2 Development of the AISA project's 
conflict detection module. The primary goals of this deliverable are: 

1. To define the operational concept to detect separation infringements with ML algorithms 
based on a data-driven approach for different ATC roles. 

2. To develop a methodology for this module's whole process, from the extraction of data from 
a database to conflict detection. 

3. To analyse which of the potential state-of-the-arts ML algorithms is more suitable for conflict 
detection based on performance metrics. 

4. To provide input data required and output information to be integrated into WP4.  

 

Intended Audience 

There are two main groups of the intended audience: 

 Experts from the related fields, 
 The AISA consortium. 

The development of conflict detection module via AI SA deliverable (AISA D.3.2) is important for the 
consortium as: 

 In the framework of WP3, it develops one of the ML modules for the AISA project.  
 The document will provide direct input to the other technical work packages (WP3, WP4, WP5) 

and the related deliverables, by providing the conflict detection module developed based on 
ML techniques.  

The document is also useful for external stakeholders, especially the following ones: 

 Air Traffic Management (ATM) system developers who would like to understand how AI, and 
particularly ML techniques, can be integrated into ATM, 

 ATM experts conducting related research, 

General automation and AI experts would like to see the possible use of AI in a new domain. 

Associated documentation 

The document is linked to several AISA and ATM documents; here, only the most relevant ones are 
listed: 

 AISA D2.1: Concept of Operations for AI Situational Awareness System.  
 AISA D2.2: Requirements for automation of monitoring tasks via AI SA. 
 AISA D3.2: Conflict detection module.  
 AISA D3.3: Air traffic complexity module.  

  



CONFLICT DETECTION MODULE   

 

 

6

 

 

Terminology 

The following table lists the abbreviations used in this document.  

Abbreviation Description 

ADS-B Automatic Dependent Surveillance-Broadcast 

AI Artificial Intelligence 

AISA Artificial Intelligence Situational Awareness 

ANSP Air Navigation Service Provider 

ATC Air Traffic Control 

ATCOs Air Traffic Controllers 

ATM Air Traffic Management 

AUC Area Under the Curve 

CD Conflict Detection 

CPA Closest Point of Approach 

CRM Collision Risk Model 

DistoMinDis Distance to reach the Minimum Distance 

FDP Flight Data Processing 

FL Flight Level 

ft feet 

GS Ground Speed 

kts knots 

MAE Mean Average Error 

min minutes 

MinDis Minimum Distance 

ML Machine Learning 

NM Nautical Miles 

RFE Recursive Feature Elimination 

RMSE Root Mean Squared Error 
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RMSLE Root Mean Squared Logarithmic Error 

SCU Sector Control Unit 

TimetoMinDis Time to reach the Minimum Distance 

SI Situation of Interest 

WP Work Package 

4DT 4 Dimensional Trajectory 
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1 Introduction 
AISA project proposes building a foundation for automation by developing an intelligent situationally-
aware system instead of automating isolated individual tasks. This system will at first be able to 
automate some of the monitoring tasks because machines cannot currently reach the same level of 
awareness as humans. Still, as the development progresses, it will be able to take over more complex 
tasks. The goal of WP3 is to build different ML modules to perform predictions regarding situational 
awareness tasks, particularly in monitoring tasks. This WP develops three independent modules 
focusing on trajectory prediction, conflict detection and airspace complexity analysis. Therefore, the 
future AISA system provides situational awareness support to ATC based on the information provided 
by the ML modules.  

This deliverable focuses on task 3.2 about conflict detection. The main goal is to determine whether 
the ML techniques could be used for conflict detection purposes in en-route airspace, to identify the 
conditions to perform that prediction and to adapt the ML model as input to the Knowledge Graph of 
the AISA system. This work’s output should be the ML predictors and how to integrate them into the 
Knowledge Graph of WP4.  

The three modules of WP3 are developed independently, although it does not mean they could not be 
integrated in the future. Task 3.1 aims to provide Four-Dimension Trajectories (4DT) predictions based 
on ML techniques. It is expected to improve the prediction of the trajectories regarding flight plans or 
pre-tactical trajectories. One of the potential integrations will be that these ML 4DT predictions will be 
used as input to improve the conflict detection process. Task 3.3 is about the analysis of the airspace 
complexity. 

Similarly, it could improve its process by considering the conflict prediction output as input for the air 
traffic complexity determination. However, these tasks are developed in parallel because of the short 
period available to develop the ML models. One of the potential further works will be about integrating 
these modules' outputs as inputs of the other modules.  

 

1.1 Literature review about conflict detection 

Conflict detection is a crucial safety aspect because of the necessity to keep a sufficient airspace safety 
level. Conflict is a barrier prior to the collision of two aircraft in the airspace. Typically, a conflict occurs 
when two aircraft are in the condition to infringe the airspace’s separation minima. Before moving 
forward, there are several concepts about conflict and collision that must be defined in advance.  

Aircraft collision means aircraft is crashing with the ground or aloft with another aircraft [1]. 
International Civil Aviation Organization (ICAO) defines conflict as any situation involving aircraft and 
hazards in which the applicable separation minima may be compromised [2]. ATM community is 
evolving to use the term called potential conflict as those trajectories for which the future position of 
2 or more aircraft might fall below specified minima (not necessary the separation minima). In 
addition, a situation of interest (SI) is an aircraft pair that the ATC must pay attention because their 
trajectories are expected to cross below specified separation (similar to potential conflict). Hence, 
there are similar conflict terms to bear in mind in this work. 
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The study and research of conflict and collision have evolved throughout the years. Since 1960, several 
authors assessed and proposed different ways to study aircraft collision-risk. Reich [3], [4] pioneered 
the collision-risk model (CRM) between aircraft in en-route airspace. This work was paramount 
because it settled the collision risk basics based on random flight errors (positioning and velocity). Later 
on,  ICAO developed a manual to estimate separation minima values in different airspace [5], [6]. For 
a more in-depth review of CRM, the work presented by Netjasov and Janic is recommended [7] 
because it reviewed the evolution of different CRM. 

Furthermore, conflict detection has evolved throughout the years to detect separation infringements. 
Regarding conflict risk, Netjasov developed a simple model to assess the conflict probability in en-
route airspace. The work focused on different time frames: strategic [8], pre-tactical [9] and current-
day planning [10]. Other authors researched conflict-risk models to quantify the airspace’s safety levels 
[11]–[14]. Most of these works focused on the strategical or pre-tactical environment. Nonetheless, 
the ultimate aim is to provide an ATC tool for conflict detection to facilitate Air Traffic Controllers’ 
labour (ATCOs).  

ATC manages the air traffic within its responsibility and must act to avoid any potential conflict 
between them. Presently, ATCOs can evaluate conflicts by analysing the predicted trajectories in the 
Sector Control Unit (SCU). The SCU shows the aircraft’s relative position and can estimate whether a 
conflict can occur based on their expertise about previous air traffic situations. The SCU evaluates the 
trajectories to facilitate the conflict-search task. It identifies potential separation infringements 
between an aircraft pair based on their current position and predicted trajectory. Typically, the way it 
is calculated is transparent for the ATCO, and it could be by using different mathematical techniques 
such as static models, worst-scenario or probabilistic case. In the case a conflict is detected by the 
ground server, it notifies this situation to ATCOs. Then, the ATCO analyses the problem and solves the 
upcoming separation minima infringement by acting in advance. 

Conflict detection is a problem tackled from different points of view over the years. [15] is a paper that 
analyses and summarises different models for conflict and collision in air traffic. The evolution of the 
main approaches can be divided into three areas: 

 Static case. This is the most straightforward approach and the worst scenario because it does 
not consider a stochastic evolution of the trajectories. The current and future status of the 
trajectories is fixed [16]–[20]. The static case encompasses every situation that can generate 
a separation infringement between aircraft pairs. The static case is the worst-case study 
because it does not distinguish between false alerts and overestimate separation 
infringements by trying to tackle all situations.  

 Dynamic case. This case is the stochastic evolution of the static case by considering the current 
status of the aircraft is not fixed and evolves throughout the trajectory [13], [21]–[26]. The 
dynamic case performs a probabilistic analysis to consider only separation infringements with 
a very high probability. Typically, it encompasses statistically 95% of all situations and discards 
the rest. Typically, it reduces false alarms but increases missed alerts.  

 Probe case. This research tries to identify the conditions that underlie multiple and diverse 
conflict situations, aiming to determine which of them can constitute a separation 
infringement [23], [27], [28]. The probe case is the most complex problem because there is no 
one-size-fits-all approach. The goal is to adapt the model to identify every situation by reducing 
false and missed alerts.  
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This work follows the probe-case research line using ML techniques to predict potential separation 
infringements. The goal is to harness state-of-the-art ML algorithms to learn the patterns that identify 
SI between aircraft pairs in a database. These patterns or conditions, underlying in a situation of 
interest, present intrinsic features (entry point, velocity, altitude, etc.) that can advance the existence 
of an SI within the airspace. 

 

1.2 Literature review of ML techniques applied in aviation 

ML is one of the most promising technologies based on computer algorithms for data processing and 
learning. EASA defines AI and ML as follows [29]: 

1. Artificial intelligence (AI) is a branch of computer science that aims to create intelligent 
machines. It has become an essential part of the technology industry. AI can be narrow, 
handling just one particular task, or strong, meaning a machine with the ability to apply 
intelligence to any problem.  

2. Within AI, ML is a core part of AI. It uses data to train algorithms and give computer systems 
the ability to “learn” (i.e. progressively improve performance on a specific task) with data, 
without being explicitly programmed. ML techniques are increasing their importance for data 
processing and data learning from huge databases. Currently, there are large databases where 
lots of information can be used by different data-driven methods. 

Therefore, ML is a data-driven approach that can be applied to multiple topics with different 
techniques. The pillar is the capacity of information extraction and learning by the machine from a 
database without being explicitly programmed for one specific task [30].  

ML algorithms can be split into three types of algorithms [31]: 

3. Supervised learning: the algorithms train with human supervision because the outcomes, 
denoted as “labels”, are provided to the algorithm associated with the database’s features. 
The algorithm creates a model to predict the labels from the features.  

4. Non-supervised learning: the algorithms train without human supervision because they have 
to learn from the features without knowing the outcomes. These algorithms focus mainly on 
clustering applications.  

5. Semi-supervised learning: this is the newest learning because it is a mix of the types mentioned 
above. This type of algorithms learns from the features that contain some of the labels, but 
others not. 

Aviation is an area where there is a massive quantity of information that ML techniques can analyse. 
ML techniques have been broadly applied to three topics in aviation (atmospheric models, airspace 
performance metrics and trajectory prediction) and, to a lesser extent, airport operations, runway 
occupancy and conflict detection & resolution. In [32], the authors proposed a similar classification, 
although focusing on different four areas: national airspace performance metrics, aviation safety, 
conflict detection and resolution and decision-making by ATC. The categories are not important 
because there are as many as authors. Hegde and Rokseth [33] provides an interesting review of the 
application of ML techniques in different areas, among which is aviation. They specifically focus on the 
applications of risk assessments with ML, identifying associated literature to other engineering areas.  
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Aiming to show organised the information extracted from the literature review, Table 1 summarises 
the different ML techniques applied to aviation grouped by different aviation areas. It seeks to identify 
which ML model was used, although it does not evaluate which model or application is the best. 

Article ML application goal ML algorithms 

Airspace performance metrics 

[34] 

Traffic flow prediction method based on Deep Learning. It 
considers the spatial and temporal correlations inherently. 

A stacked auto-encoder model is used to learn generic 
traffic flow features. 

Neural Networks 

Stacked Auto-Encoder 

[35] 
It evaluates Deep Learning algorithms to predict flight 

delays. It detects patterns in air traffic delays. 

Recurrent Neural Networks 

Long Short-Term Memory 
networks 

[36] 

DART is a SESAR project that demonstrates how ML 
methods help in improving trajectory predictions. 

It also seeks for improving the prediction of demand-
capacity imbalances in airspace use. 

Hidden Markov Models 

Reinforcement Learning 

 

It evaluates the feature engineering problem to predict 
aircraft landing time in Extended TMA with ML models. 4 

sets of features present a significant impact on predictions, 
and three ML techniques are compared. 

Gradient Boosting Machine 

Random Forest 

Extra-Trees 

Trajectory prediction 

[37] 

Predict an aircraft trajectory in the vertical plane. The 
method depends on a small number of starting features. 
Two prediction methods based on the operation of real 

trajectories or not. 

Neural networks 

[38] 

An ML approach to Trajectory prediction for sequencing 
and merging traffic in Arrival Manager scenarios are 

evaluated using real aircraft trajectory and meteorological 
data. 

A stepwise regression method is used to determine the 
inputs and functions of the prediction model’s 

information. 

Generalised Linear Models 

Stepwise Regression 
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[39] 
ML to improve the aircraft climb prediction for ground-

based applications. This paper predicted the mass based 
on ML techniques and compared it with the BADA model. 

Multiple Linear Regression 
on the k variables selected 

by a forward-selection MLR-
FSk 

Ridge regression Ridge with 
Principal component 

regression 

A single-layer neural 
network 

Stochastic Gradient 
Boosting Tree algorithm 

[40] 

ML to improve the aircraft climb prediction for ground-
based applications. This paper predicted the climbing 

speed-profile based on ML techniques and compared it 
with the BADA model. 

Gradient Tree Boosting 

[36] 

DART is a SESAR project that demonstrates how ML 
methods help in improving trajectory predictions. 

It also seeks for improving the prediction of demand-
capacity imbalances in airspace use. 

Hidden Markov Models 

Reinforcement Learning 
(Ind-Colab-RL, Ed-Colab-RL 

and Ag-Colab-RL) 

[41] 

ML predicts the operational factors required for trajectory 
prediction focusing on the climbing stage. It also analyses 

the impact of operational factors on the climbing 
trajectory. 

Gradient Tree Boosting 

[42] 

It introduces a hybrid model to address the short-term TP 
in Terminal Manoeuvring Area (TMA) by applying machine 

learning methods. 

ML model is trained to predict the Estimated Time of 
Arrival (ETA). 

Clustering-based pre-
processing 

Multi-Cells Neural Network 

Principal Component 
Analysis 

Nested Cross-validation 

Multiple Linear Regression 

[43] 
It focuses on the application of ML algorithms and NN 
models to runway recognition trajectory classification 

study. 
Most ML algorithms 

Conflict detection and resolution 
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[44] 

An ensemble approach for CD in free flight is proposed. 
Different CD techniques are evaluated. Data mining 

techniques are used to identify patterns where the CD 
algorithms do not correctly identify a conflict. 

supervised Classifier System 

Linear Classifier System - 
genetics-based ML 

[45] 

It proposes the development of artificial intelligence 
capable of resolving conflicts. The conflict resolution 

manoeuvres consider the presence of traffic and 
environmental uncertainties. The ML does not need prior 

knowledge from expected actions. 

Reinforcement learning: 
Deep Deterministic Policy 

Gradient 

[46] 

It introduces a conflict detection framework with ML 
methods. It aims to improve the Closest Point of Approach 

(CPA) prediction accuracy based on time to separation 
minima infringement with real trajectory data. 

Multiple Linear Regression 

Support Vector Machine 

Feed-Forward Neural 
Networks 

K-Nearest Neighbours 

Gradient Boosting 

Random Forest 

[28] 

It introduces a conflict-detection framework with ML for 
3D CPA prediction in a look-ahead time of fewer than 20 

minutes. 

ML models predict the time, horizontal and vertical 
distance of CPA based on real trajectory data. 

Feed-Forward Neural 
Networks 

K-Nearest Neighbours 

Gradient Boosting 

Random Forest 

Table 1 Summary of the literature review focusing on ML techniques applied to aviation 

To sum up, the most extended field related to ML until now could be the trajectory prediction. There 
is more research in airspace performance metrics, although they are not included herein for the sake 
of clarity. There are no references about ML techniques applied to atmospheric conditions because 
they are out of the problem’s scope to tackle herein. The authors recommend the work [32] that 
describes several previous research on this topic. Regarding conflict detection, two articles tackled 
different approaches based on data mining techniques or ML. The solution for the lack of separation 
infringements was to simulate [45] or modify trajectories extracted from radar  [46]. Notably, [47] was 
interesting because it analysed different ML techniques to calculate the closest point of approach and 
the minimum separation between aircraft pairs. Finally, it can be concluded that little research deals 
with applying ML techniques for conflict detection. 
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2 Framework for CD based on ML techniques 
This section details the framework developed in task 3.2, aiming to apply ML techniques for conflict 
detection. One of this work's goals is to analyse the viability of using ML models to predict separation 
infringements with or without having 4DT predictions as inputs. Firstly, the underlying problem and 
the methodology used for ML techniques implementation is described. Secondly, the conflict detection 
principles and the safety metrics that characterise separation infringement predictions are explained. 
This data-driven approach focuses on the implementation of ML techniques, and then, it is detailed 
the operational concept for this novel approach. Lastly, this data-driven approach tackles two 
operational models based on ATC roles.  

 

2.1 Problem approach 

As new technologies appear, it is required to evaluate their viability in present problems. This work 
deals with introducing new technology (ML algorithms) to a present problem (conflict detection). The 
problem does not vary compared with the one described in the introduction. However, the new 
approach applies new data-driven approaches to perform separation infringement predictions during 
tactical air traffic management. Figure 1 shows a flow diagram of the problem approach. 

 

Figure 1 Description of the ML approach for conflict detection. 

The application of data-driven approaches presents different methodologies and necessities compared 
with traditional model-driven methods. The main requirement is to have a database to extract the 
information to train the ML model, which can be the most complicated part. This work considers a 
database based on Automatic Dependent Surveillance-Broadcast (ADS-B) trajectories. Further 
research should evaluate this methodology’s compatibility with other data sources, e.g., by using radar 
data instead of ADS-B. However, ADS-B trajectories cannot be implemented immediately because the 
previous filtering and adjustment of the ML algorithms’ trajectories are required. 
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Currently, there are several state-of-the-art ML techniques, and it is expected to evaluate different of 
them. Considering several of them will permit identifying the best among them, although other ML 
techniques out-of-the scope of this work could improve the results. The results of this process are to 
provide a trained ML model that could perform predictions. Once the ML model is trained, it can be 
used to perform predictions. However, this application demands a similar ADS-B pre-processing before 
using them for predictions.  

 

2.2 Conflict detection principles 

This work deals with monitoring tasks focusing on situational awareness. With this aim, this work uses 
the concept of Situation of Interest (SI). One SI is when an aircraft pair is expected to intersect with a 
horizontal separation lower than a pre-defined separation. This pre-defined separation is specified by 
the ANSP and is larger than the current separation minima (𝑆௠௜௡ = 5 Nautical Miles - NM - and 𝐻௠௜௡ =
1000 feet - ft). It is more convenient to talk about SI, a similar concept to potential conflict because 
ML’s predictions present unknown uncertainties. These unknown uncertainties are difficult to quantify 
and make it difficult to identify separation infringements when the goal is to provide information about 
situational awareness. Therefore, these aircraft pairs can be classified into two groups: 

 SI: aircraft pairs that cross with separation minima lower than specific separation. Herein, the 
pre-defined separations are horizontally 10 NM and vertically 1000 ft.  

 No Si: aircraft pairs that cross without infringing pre-defined separations.  

A conflict can then be considered a reduced SI group, i.e., every conflict means SI, but not every SI 
implies conflict. 

This document uses the terms detection and prediction interchangeably. The reason is this work try to 
predict a separation infringement within the airspace. At one specific location or with some look-ahead 
time, it performs a prediction of separation evolution to know whether an aircraft pair will infringe 
specific separations. Generically, this situation encompasses all definitions described in section 1.1: 
conflict, potential conflict and situation of interest. Besides, this document uses the term conflict 
detection to analyse the evolution of the separation between an aircraft pair. However, the results and 
implications are related to SI. Therefore, it is important to note these potential ambiguities in the 
terminology that could mislead interpretations.  

Moreover, this work evaluates a set of safety metrics for each aircraft pair. Safety metrics are defined 
as those obtained for each aircraft pair about their intersection’s operational characteristics. One SI 
can be characterised based on different metrics such as time or distance to the minimum separation 
or the conflict probability. This information is crucial for the system and ATCOs to take in advance 
actions to avoid separation infringements.  

 

2.2.1 Generation of SI based on ADS-B simulations 

The first hindrance to the statistical analysis of SI is the lack of real situations. The primary responsibility 
of the ATC service is to avoid these type of situations. When the different safety barriers fail, a 
separation infringement can occur from strategical to tactical level [23]. Hopefully, the separation 
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infringements arise in rare situations and by specific circumstances [47]. Conversely to these rare 
situations, ML techniques need an extensive database to learn the patterns that underlie SI situations. 
Therefore, the first necessity is to generate a database with a sufficient number of SI that could be 
used to train the ML algorithms. 

Up to now, different methods have been used to simulate conflicts or SI. It has been used top-down 
models where the conflicts’ characteristics were defined in advance, and the simulations represented 
those situations [48]. Other methods performed simulations adding uncertainty to different flight 
variables (wind, velocity, weight, etc.) [12], [17], [21], [27]. Herein, the author’s approach modifies the 
entry time of real trajectories randomly (from ADS-B data) to pierce the airspace in the same time 
period. Therefore, SI situations can be simulated based on real trajectories about ‘what-if’ situations. 
This approach provided positive results in previous research, e.g., [46] performs an experiment where 
all aircraft pierces the French airspace at the same time.  

One limitation of this approach is the weather, and operational conditions vary throughout days and 
hours. A second problem to generate aircraft pairs is the high computational workload. This issue is a 
combinatorial problem depending on the number of aircraft involved, e.g., a set of 𝑛 aircraft generates 
𝑂(𝑛ଶ) aircraft pairs see Figure 2. 

 

Figure 2 Combinatorial problem for conflict detection between aircraft pairs. 

The solution applied to both problems is the same: to cluster the trajectories in specific time periods. 
The cluster of trajectories based on time periods allows considering the same weather and operational 
conditions for the aircraft pairs and reducing the computational workload by considering only a specific 
set of trajectories. 

 

2.2.2 Safety metrics 

Safety metrics provide information about the characteristics of a SI or the values acquired by specific 
variables. This information is crucial because it identifies the SI and includes information about the 
probability and severity. It has been considered the following ones. 

 Minimum Distance(𝑀𝑖𝑛𝐷𝑖𝑠): It is the minimum separation reached by an aircraft pair ൫𝑎௜, 𝑎௝൯. 
This variable considers the horizontal separation (𝑠) and vertical separation (∆ℎ) between 
aircraft pair and provide information about the severity of the SI. 
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𝑀𝑖𝑛𝐷𝑖𝑠 = 𝑠൫𝑎௜ , 𝑎௝൯ = min൫𝑠(𝑎௜ , 𝑎௝൯  𝑖𝑓 ∆ℎ < 𝐻௠௜௡ & 𝑠൫𝑎௜, 𝑎௝൯ < 𝑠ௌூ 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑀𝑖𝑛𝐷𝑖𝑠 = 𝑠൫𝑠൫𝑎௜ , 𝑎௝൯ = min൫𝑠(𝑎௜, 𝑎௝൯൯ + 

∆ℎ൫𝑠൫𝑎௜, 𝑎௝൯ = min൫(𝑎௜ , 𝑎௝൯൯𝑆௠௜௡/𝐻௠௜௡ 

( 1) 

 Situation of interest (𝑆𝐼): Aircraft pair are denoted of interest (SI) when they cross with a 
vertical separation lower than 𝐻௠௜௡ and horizontal separation 𝑠௛௢௥ < 𝑠ௌூ. Specific separation 
for SI in this work is 𝑠ௌூ = 10 𝑁𝑀. However, each Air Navigation Service Provider (ANSP) can 
define this control variable. Therefore, an SI is defined as: 

𝑖𝑓 ∆ℎ൫𝑎௜ , 𝑎௝൯ < 𝐻௠௜௡ 𝑎𝑛𝑑 𝑠 < 𝑠ௌூ 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑡 → 𝑆𝐼 = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑆𝐼 = 0   ( 2) 

 Distance to Minimum Distance (𝐷𝑖𝑠𝑡𝑜𝑀𝑖𝑛𝐷𝑖𝑠): it provides the distance required to reach the 
MinDis. This value depends on the timestamp considered (𝑡଴). 

𝐷𝑖𝑠𝑡𝑜𝑀𝑖𝑛𝐷𝑖𝑠 = (𝐿𝑜𝑛𝑔, 𝐿𝑎𝑡)൫𝑠൫𝑎௜ , 𝑎௝൯ = 𝑀𝑖𝑛𝐷𝑖𝑠൯ − (𝐿𝑜𝑛𝑔, 𝐿𝑎𝑡)(𝑡଴) ( 3) 

 Time to Minimum Distance (𝑇𝑖𝑚𝑒𝑡𝑜𝑀𝑖𝑛𝐷𝑖𝑠): it provides the time (𝑡) required to reach the 
MinDis. This value depends on the timestamp considered. 

 Probability of prediction ൫𝑃௣௥௘ௗ൯: Several ML algorithms for classification problems provide 
the probability of their predictions. This is the ML algorithm’s probability of classifying as SI (1) 
or No SI (0). This value must be considered as a confidence level of the prediction. 

Throughout the project development, other safety metrics have been studied as distance and time to 
conflict. However, the formulation of these safety metrics and the results obtained were noted right 
and were discarded. These or other safety metrics should be studied in further works.  

𝑇𝑖𝑚𝑒𝑡𝑜𝑀𝑖𝑛𝐷𝑖𝑠 = 𝑡൫𝑠൫𝑎௜, 𝑎௝൯ = 𝑀𝑖𝑛𝐷𝑖𝑠൯ − 𝑡଴ ( 4) 
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2.3 Towards a data-driven approach based on ML 

This work’s primary goal is to develop a methodology or process to perform predictions about 
separation infringements using ML techniques. Later on, these predictions would be integrated into 
the AISA system. One requirement to apply ML techniques is to have a database from which the ML 
algorithm could learn the underlying patterns to perform predictions in other situations. This database 
is composed of a set of historical situations based on aircraft pair trajectories. The main problems to 
build a database are the data source and the 4DT predictions that will affect the model constitution 
and performances. 

Currently, the main data sources available are DDR2 provided by Eurocontrol [49], ADS-B data provided 
by The OpenSky Network, and radar data offered by ANSPs. The information provided by radar 
surveillance is different from ADS-B data, and the data format and the datalink used. Based on 
historical data, there are three types of available trajectories: flight plans (strategic goal), pre-tactical 
trajectories (pre-tactical goal) and flown trajectories (tactical goal). Every kind of trajectories provides 
different information with different level of accuracy.  

Another issue is about the source to obtain the 4DT prediction. ANSPs and aircraft can provide 4DT 
predictions performed by their systems. However, the accuracy of the predictions differs from the 
prediction source. Both systems predict 4DT based on the available information. The available data 
can be the flight plan, a 4DT prediction performed by the system, or a prediction obtained from the 
aircraft. Nonetheless, the worst situation would be when the on-ground system does not have any 
information about future aircraft intent.  

Herein, the approach followed seeks to be a one-size-fits-all methodology suitable for different data 
sources and 4DT predictions, although this work only deals with ADS-B data. It provides a whole 
process that could be adaptable to an additional data source. However, one limitation of this work is 
the compatibility of different data sources and how to combine them with other servers. This issue is 
one of the future problems that the digitalisation process will face [50], [51]. 

Therefore, it is essential to note that the goal of applying ML techniques of this work is to provide 
predictions focusing on separation infringements but not in trajectory prediction. This means the ML 
process does not perform the trajectory’s prediction and then analyses the separation infringement 
that could occur. The ML process predicts the separation infringements based on the available 
information. This approach is novel because it employs ML algorithms to learn the operational factors 
that lead to SIs.  

The first step is to train an ML predictor that could perform SI predictions for aircraft pairs. To this end, 
a database must be used to train the ML models. The number of aircraft pairs considered in the 
database is crucial because the greater their number, the greater the prediction’s ability. Besides, the 
features of the database provide information crucial to the database. ML models demand a database 
with different operational characteristics between an aircraft pair to perform the prediction. 
Conversely, to increase the number of samples means higher computational times. The goal is not to 
provide the best prediction but to prove that this technology can predict SIs. 

This work considers four labels or targets: the existence of SI or not, probability of SI, minimum 
separation to reach (MinDis), distance up to get the minimum distance (DistoMinDis) and time up to 
minimum distance (TimetoMinDis). According to the type of labels, there are two different problems 
to solve with ML. Identifying whether a conflict or SI will happen is a classification problem. The conflict 
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probability is related to the significance level of the classification prediction. On the other hand, the 
regression problem makes numerical predictions, as is the safety metrics. Different ML models must 
be used independently for each target. It is important to note that both ML predictors must be trained 
in the same database. Otherwise, inconsistencies can arise between them.  

Typically, the database is split into two sets: training and testing set. The training set is provided to the 
ML model to learn the relations and generate a mathematical model to make predictions. The testing 
set is used to validate the model trained and know how it will work for new instances. ML model must 
learn from the historical information (training set) the operational conditions to predict a SI. The 
approach evaluates the features for every aircraft pair at each timestamp. The features relate the 
operational characteristics with the occurrence of a separation infringement in the future. These 
features (such as initial separation, relative velocity, vertical speed, etc.) are detailed in section A.1. 
Figure 3 shows a draft of the training-set distribution in features and labels. 

 

Figure 3 Representation of the training set. 

One of the future research lines of this methodology will be to analyse the compatibility with different 
data sources, i.e., the information source of the trajectories can come from different ways: flight plans, 
4DT predictions or Flight Data Processing (FDP) data. Figure 4 shows a scheme of the application of 
this potential compatibility.  

 

Figure 4 Adaptability of the training set to the database available. 

However, ML projects present several problems associated with data consistency, algorithms and their 
optimisation. The identified issues with data consistency are:  
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- Lack of data. ML algorithm needs lots of data to learn the patterns that underlie the problem. 
The larger the database, the better metrics obtained. Most complex ML models can demand 
millions of samples as well as features that constitute each sample. However, the cost of using 
millions of samples is the computational cost in terms of time and memory required. 

- Non-representative data. This problem arises when the data acquired is non-representative of 
the situation to analyse. The training data do not correctly represent the situation to predict, 
e.g., it could be the case in which the model is trained for one airspace and later on employed 
in different airspace.  

- Outliers. Outliers are data points that differ significantly from the observations. In the case the 
number of outliers is high, the ML model will not predict the situations correctly.  

- Imbalance. Unbalanced problems are those in which the classes of the dataset are not equally 
represented. This is a typical problem that appears in this work, and it is detailed in section 
5.2.  

On the other hand, ML algorithms tend to over or underfitting with the training set, i.e., they can 
perform perfect predictions in the training set and provide bad performances on new samples. This is 
a generalisation problem that can be solved by different techniques, as is explained in section 5.1. 
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2.4 Operational approach for ATC roles 

This work develops two modes for each ATC role. They have been considered because their finality 
and information requirements are different. This approach evaluates the application of ML techniques 
to different databases to identify which of them provides better results. 

The Static mode focuses on planner ATCO. This mode predicts SI and their safety metrics when an 
aircraft pierces into the airspace. The predictions are performed with the aircraft located within the 
airspace. Aircraft beyond the airspace are not considered. This prediction is performed once and is not 
updated. It does not receive as input the 4DT predictions of the different aircraft. Finally, the Static 
mode provides information about SI between the aircraft that pierces into the airspace with other 
aircraft within the airspace, a similar function that the planner ATCO currently does. 

The Dynamic mode focuses on tactical ATCO. This mode predicts SI and their safety metrics throughout 
the evolution of the aircraft within the airspace. The predictions can be performed dynamically and 
not once as the Static mode. Then, it considers aircraft within the airspace, and that will pierce in the 
same time period. Another difference is the Dynamic mode receives a 4DT prediction of the aircraft 
within the airspace. The SI and safety metrics predictions of the Dynamic mode evolves with the 
trajectory evolution. Finally, the Dynamic mode provides updated predictions throughout the 
evolution of the aircraft within the airspace. 

Therefore, both modes respond to the viability of using ML techniques for separation infringement 
predictions. Besides, the Dynamic mode confirms whether ML models improve the outcomes of the 
4DT predictions using those 4DT predictions as input data.  

 

2.4.1 Static mode 

The Static mode focuses on the planner controller and presents the following characteristics: 

 It performs a prediction when one aircraft pierces into the airspace. The prediction is 
performed once and is not updated. This fix snapshot provides information with the rest of the 
aircraft located within the airspace.  However, this condition could be modified to perform 
predictions 1, 2 and 3 minutes or 2, 5, and 10 NM before the aircraft pierces into the airspace. 
The ANSP should define this requirement. 

 It only evaluates separation infringements with aircraft within the airspace.  
 The system does not receive information about 4DT predictions. The only information 

available to perform the prediction is the state vector of the aircraft.  
 It focuses on the planner controller role, providing information about the potential aircraft 

pairs of interest. With this information, the planner controller will take the ATC actions more 
convenient. 
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Figure 5 Representation of Static mode. 

Figure 5 represents the operational concept of the Static mode. When aircraft 𝑖 pierces the airspace 
the system seeks for SI with the aircraft within the airspace. The information available at this instant 
is the state vector based on ADS-B data. ML predictor must provide predictions about SI and their 
safety metrics. 

 

2.4.2 Dynamic mode 

The Dynamic mode focuses on the tactical controller and presents the following characteristics: 

 It performs predictions throughout the aircraft’s evolution within the airspace, and the 
prediction varies with the time throughout the flight trajectory. In this way, the system has 
update information each 𝑐 minutes.  

 It considers aircraft within the sector and aircraft that are in the proximities of the airspace. 
The requirement is the aircraft will pierce the airspace in the following 𝑚 minutes. Both 𝑐 and 
𝑚 values should be defined by ANSPs. 

 The system provides a 4DT prediction for each aircraft and is used as input for the ML model.  
 It focuses on the tactical controller’s role providing continuous surveillance of the aircraft 

within the airspace. With this information, the tactical controller will take the ATC actions more 
convenient.  
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Figure 6 Representation of Dynamic mode. 

Figure 6 represents the operational concept of the Dynamic mode. The aircraft 𝑖 pierces into the 
airspace, and the system performs SI prediction with the rest of the aircraft within the airspace and 
aircraft that will pierce into the airspace in 𝑚 minutes. The available information is the aircraft’s state-
vector based on the ADS-B data and a 4DT trajectory prediction of both aircraft. With this information, 
the ML predictor performs SI and safety metrics prediction. The ML predictor calculates the prediction 
of the SI and safety metrics throughout the airspace trajectories' evolution.  

The main problem of the Dynamic mode is to get 4DT predictions of the aircraft. Typically, the SCU or 
the aircraft (Extended Projected Profile ADS-B) provide 4DT predictions. In this work, it is not possible 
to obtain this type of predictions. Based on OpenSky’s ADS-B data, a whole dataset of 4D trajectories 
that flew within the airspace previously is available. It is assumed the 4DT prediction can be a similar 
trajectory stored in the ADS-B database. Therefore, the 4DT prediction will be considered based on 
stored 4DT trajectories from ADS-B data. The introduction of different 4DT predictions based on SCU 
or aircraft information should be one topic to research in further works.  

It is required to define several operational requirements to ensure the similarity between the 4DT 
prediction and a trajectory stored in the ADS-B database: 

 The first filtering selects one trajectory with the same callsign. Typically, aircraft repeat their 
trajectories throughout time.  

 The second filtering considers operational restrictions considering velocity, heading and 
location of the entry point.  

o The velocity difference must be minor than 10 knots.  
o The heading difference must be minor than 2º. 
o The location difference of the entry points must be minor than 5 NM. 

 In case there is more than one trajectory that fulfils previous restrictions, the trajectory with 
a minor heading difference will be selected. 

 If none of the same callsign’s trajectories fulfils the above restrictions, the algorithm extends 
the search to other callsigns.  
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Figure 7 shows an example of the above process. It represents the selection of 4DT prediction based 
on ADS-B trajectories that can be the most similar when one aircraft pierces the airspace.  

 

Figure 7 Representation of 4DT prediction based on ADS-B trajectories. 

Once the 4DT prediction is selected from the ADS-B database, two modifications have been made to 
ease the system's interoperability in this work: resample and time deviation.  

The first modification is a trajectory resample depending on the frequency 𝜖 of timestamps considered. 
This value can vary from seconds to minutes, and the ANSP can define it. The resample’s goal is to 
reduce the computational workload and the final database size because of the high number of ADS-B 
state vectors. Typically, ADS-B state vectors provide information every second. Therefore, the 4DT 
prediction is a resampled trajectory of the ADS-B stored data, and it does not have the same quality. 
It is not an issue to resample a trajectory going on a straight line, but if the aircraft is turning or doing 
a manoeuvre, it won’t be reflected correctly, as Figure 8 shows. 

 

Figure 8 Representation of loss in data quality from the resampled trajectory. 

The resample is also critical for detecting if two aircraft have a conflict because of the minimum 
distance an aircraft pair can reach. Typically, the resampled trajectory is composed of fewer data 
points. The minimum distance that could be reached will be higher than the minimum distance 
reached by the full ADS-B trajectory. Therefore, the goal is to improve the separation prediction 
performed by the 4DT prediction (resampled) by implementing ML techniques. This approach is 
different from the Static mode because no 4DT prediction is provided to the ML algorithm. Figure 9 
shows an example of the variations in the separation evolution due to the resampled trajectories.  
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Figure 9 Example of the impact on separation by resampled trajectories. 

The second modification is about the time deviation of the 4DT prediction. This 4DT prediction must 
adapt its entry time to the real trajectory, which the ML will perform the prediction. However, it is 
necessary to introduce some uncertainty between the real trajectory’s entry time and the 4DT 
prediction. Then, the second modification is about a time deviation (𝜏) of the entry time of the 
resampled trajectory (4DT prediction). The larger this value, the larger the error between the real 
trajectory and the 4DT prediction. Herein, the uncertainty considered is a random distribution of ±20 
seconds. This is a value selected by the authors, and further work should study its validity.  

 

Figure 10 Conceptual schema of trajectory modification for Dynamic mode. 

Figure 10 represents the modifications performed to the ADS-B trajectory stored in the database and 
used as 4DT prediction. The triangles represent the resample trajectory, reducing the number of 
samples of the 4DT prediction to reduce the computational workload. In addition, these triangles are 
deviated temporarily to introduce uncertainty to the entry points.   
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2.4.3 ML predictions and implications to ATC 

There are two types of problems to solve with ML algorithms: classification and regression. One issue 
of classification is the problem of clustering between two classes (binary) or multiclass. The ML 
algorithms must learn which class a sample belongs to, based on its features. The regression problem 
aims to provide a numerical prediction of the target. In this work, the application of both approaches 
are the following ones: 

 Classification. ML algorithms provide predictions about which aircraft pair are SI and which 
not. It is required to have a database that contains multiple situations of aircraft pairs. Once 
the model is trained with diverse samples, the ML algorithm can predict whether an aircraft 
pair labelled as SI or not. Besides, some algorithms provide information about these 
predictions' confidence level, i.e., the prediction's probability. However, classification 
algorithms can provide erroneous predictions: 

o Missed alerts: aircraft pairs that constitute an SI but the ML predictor erroneously 
classify as no SI. This is the worst situation because the ML predictor does not inform 
about aircraft pair that could infringe the separation in the future.  

o False alerts: aircraft pairs that do not constitute an SI but the ML predictor erroneously 
classify as SI. This is also bad performance of the ML predictor because it will increase 
the ATCO's workload.  

Different metrics of the ML algorithms can evaluate both rates. Although it is more important 
to reduce the missed alerts than the false alerts, this is something that the ANSP should 
balance previously. This work will try to minimise both missed and false alerts levelly.  

 Regression. ML regression algorithms provide numerical predictions of the labels selected. 
These labels refer to the safety metrics considered herein. However, this type of algorithms 
does not give information about the level of confidence in the predictions. The only 
information about the effectiveness of the ML algorithms is about overall metrics. 

This work will develop ML classification and independent ML regression predictors for the different 
safety metrics. The classification predictor provides information about whether an aircraft pair is an SI 
and its probability. The regression predictor provides information about safety metrics. To consider 
both predictor’s type is a strong point of this approach because a double check is performed between 
the classification and the regression predictor of MinDis.  

However, there is a problem when the SI prediction and the MinDis prediction do not match, i.e., the 
prediction of classification is No SI, but the regressor predicts a MinDis of 3 NM or vice versa. The 
solution is to avoid these misleading situations by including a prediction risk level. There are several 
combinations between the predictions that can have different risk levels. Table 2 shows the different 
types that can arise.  

Regression 
Classification 

No SI (>10 NM) SI (<10 NM) 

[10;>10) NM Level 0 - No inform ATC Level 1 - Inform ATC 

[0;10) NM Level 1 - Inform ATC Level 2 - Inform ATC 

Table 2 Matrix of risk levels depending on ML predictions. 
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Three prediction risk-levels are denoted numerically and depend on the different combinations of the 
predictions.  

 Level 0. Both ML predictors predict no SI will occur.  
 Level 1. One ML predictor predicts SI will occur, but the other ML predictor denies it. 
 Level 2. Both ML predictor predicts SI will occur. 

Level 1 is characterised because one of the two ML predictors provides an aircraft pair classified as SI. 
To consider level 1 as information to provide to the ATC means an increase in the ATC monitoring task 
and can reduce the capacity. Further research should study if level 1 cases should be notified to ATC 
regarding the percentage of samples denoted as Level 1 and the impact on ATC workload. Lastly, the 
colours used in Table 2 are a proposal about how the ATCO could receive this information graphically. 
Therefore, the application of ML techniques for conflict detection can be improved with the results of 
two independent ML predictions, see Figure 11. 

 

Figure 11 Information flow for different ML predictions. 
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3 Switzerland airspace and OpenSky as 
database 

This work focuses on en-route airspace characterised by a low rate of climbing and descending aircraft 
and, on the other hand, a high number of cruise operations. According to the WP3’s tasks, the 
LSAZM567 airspace volume in Switzerland and the time period is the AIRAC cycle of June 2019 are 
selected. This section describes this airspace and analyses the operational features of the air traffic 
sample.  

 

3.1 Airspace description 

Switzerland airspace is located in central Europe. At higher Flight Levels (FLs), the air traffic is 
characterised by overflights that connect different European countries. Switzerland airspace is split 
into lower (from the ground to FL195) and upper (from FL195 to upwards). The controlled airspace is 
limited in the upper airspace up to FL660, and aircraft must follow published airways, see Figure 12. 

 

Figure 12 Switzerland en-route chart upper airspace. 

This en-route chart is dated 05 December 2019, the same year of the air traffic data used in this work. 
Nonetheless, this chart could present minor modifications with the chart published for the period of 
study.  
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The typical distribution of airspace sectors in the European airspace is geographical split into lower and 
upper. The vertical division between lower and upper sectors generally do not match with lower and 
upper airspace boundary. The vertical division between lower and upper sectors are usually located in 
a stretch from FL300 to FL350, depending on the air traffic distribution. The higher the air traffic in the 
upper flight levels, the higher the sector boundary is. 

Switzerland airspace does not precisely follow this geographical sectorisation. Two airspaces 
constitute Switzerland airspace (Geneva – LSAGUTA and Zurich – LSAZUTA), split vertically into several 
sectors. The different sectors cover the same geographical boundaries, but they have other FL 
boundaries. The reason is the high number of aircraft flying cruise trajectories. This work has selected 
the airspace sector LSAZM567 from the Zurich airspace with vertical boundaries from FL355 to FL660. 
Figure 13 shows an image of the LSAZM567 airspace in Switzerland. 

 

Figure 13 Geographical location of LSAZM567 [52]. 
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3.2 ADS-B data from OpenSky: Database analysis 

Intending to apply ML techniques, the first need is to dispose of a 4D trajectory database, i.e., every 
aircraft position is referenced with a timestamp. The aircraft database’s typical workflow is to build it 
by simulations based on ideal or similar conditions of a particular case study. However, it is becoming 
increasingly common to find aeronautical databases that provide real aircraft trajectories. This work 
takes advantage of ADS-B trajectories available (with license) in OpenSky [53]. OpenSky provides 
aircraft trajectories based on ADS-B upon gathering that information from aircraft in the European 
airspace. These trajectories were extracted from different ADS-B receptors in the European airspace. 
This technology allows aviation engineers for arranging an ADS-B database from restricted access to 
the users. Nonetheless, it could be extracted other real trajectories from different data sources as 
Flight Aware (ADS-B) [54], radar (DDR2) [52], or directly received by some ANSP. Appendix A provides 
an in-depth description of the ADS-B data and their application to this problem.  

One of the assumptions previously mentioned is the trajectories belong to the AIRAC cycle of June 
2019 in the LSAZM567 airspace. Although the whole month’s ADS-B information has been 
downloaded, it only has been studied for 15 days due to the high computational workload. The 
problem of this reduction is because the combination of aircraft trajectories (𝑛) to generate aircraft 
pairs is O(𝑛ଶ). If there is around 10ଷ trajectories for one day; over 10଺ aircraft pairs can be generated. 
To evaluate the whole month, it would be required to optimise the process described in this work. This 
task is not part of this work and could be performed in further research. However, the limitation of the 
number of trajectories used is not a problem for this task. 

Besides, aircraft that operate from 22 to 7 hours have been considered. This period is regarded as the 
night period in which the air traffic demand drops sharply. The airspace configuration is modified up 
to only one airspace volume that handles the whole Switzerland airspace. This lower air traffic demand 
allows ATCOs to divert trajectories from flight plans by ATC instructions. These instructions provide 
benefits regarding time, consumption or distance. Then, trajectories operated during the night period 
can be considered as non-typical situations. These non-typical situations are difficult to identify during 
the daytime period when ATCOs are limited due to the high number of aircraft and workload. 
Therefore, these trajectories’ embedding provides non-typical situations to the database, and the ML 
algorithm can consider them. Further research should analyse this influence and could develop 
different ML algorithms depending on the time frame. 

It has been downloaded from the raw database from OpenSky from 20 June to 19 July 20191. For this 
time period, an analysis of the raw database has been performed. The goal of this analysis is to identify 
statistical features of the air traffic of the operational variables. Besides, this statistical analysis will 
characterise the limits to identify trajectories that the ML algorithm should not evaluate. The ML 
algorithm should not perform predictions if the operational variables are not in the raw database 
range. 

Firstly, the raw database is analysed as a whole for the LSAZM567 airspace. The information about the 
database size is: 

                                                           

 

1 4th July 2019 is not considered because it will be selected as the test day in the AISA system. 
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- Database volume: 2.1 GB. 
- The number of ADS-B samples: 15477475. 
- The number of trajectories: 25530.  

Secondly, primary operational variables are evaluated statistically in Table 3: 

 Maximum Minimum Mean Standard deviation 95% limits 

Altitude (ft) 47950 35500 37672 1547 [34578; 40766] 

Groundspeed 

(knots – kts) 
597 101 447 39 [389; 525] 

Vertical rate 

(ft/min) 
3264 -3264 3 247 [-491; 497] 

Table 3 Statistical values of the raw database. 

The maximum value of the altitude is FL480, which does not match with the 95% boundaries. The 
number of aircraft above FL410 is reduced; then, higher aircraft could be treated as outliers. The 
minimum 95% limit is lower than the real minimum value of the database. This result was expected 
because the lower vertical boundary is FL355. Then, the altitude variable cannot be treated as a normal 
distribution.  

Ground Speed (GS) behaves similar to a normal distribution. 95% limits are from 389 to 525 kts. The 
maximum value seems operationally valid, but the minimum value is an outlier. Lower values than -
95% should be considered as outliers considering the statistical distribution.  

The vertical rate cannot be modelled as a normal distribution. Values grouped by 25%, 50% and 75% 
match values near 0 ft/min. The reason is most aircraft perform cruise flights. Nonetheless, there are 
aircraft climbing and descending with a vertical rate of around ±1500 ft/min. Therefore, the limits of 
the vertical rate could be from -1500 to 1500 ft/min. However, they demand further statistical analysis.  

Figure 14 shows the data representation of the three variables analysed for LSAZM567 airspace.  

   

Figure 14 Data representation of LSAZM567 airspace: left) altitude, medium) groundspeed and right) vertical 
rate. 

An individual analysis of the raw database for the first week (from 20 to 26 June 2019) has also been 
carried out. The goal is to analyse differences between the days. Table 4 gathers the statistical data. 
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 Week 1 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

ADS-B data 4612757 610461 669015 736336 708139 627106 643869 617673 

Trajectories 5587 685 748 830 855 763 797 738 

Aircraft pairs 2𝑒଻ 1𝑒଺ 1𝑒଺ 1𝑒଺ 1𝑒଺ 1𝑒଺ 1𝑒଺ 1𝑒଺ 

Altitude 
Mean 38027 38007 38012 37925 38048 38093 38013 38108 

SD 1640 1561 1667 1502 1870 1686 1504 1642 

Ground 
Speed 

Mean 449 447 444 449 455 449 449 450 

SD 29 31 30 20 43 32 20 19 

Vertical 
rate 

Mean 12 12 10 13 12 14 8 12 

SD 257 248 260 265 249 265 241 268 

Table 4 Statistical data of LSAZM567 airspace for the first week of AIRAC Jun 2019. 

As can be extracted from Table 4, the air traffic distribution is similar for all days. There is an upturn in 
air traffic on days 3 and 4 compared with the rest of the days, and day 1 presents the lowest traffic. 
The main feature is that there are no significant operational differences because they are quite similar 
regarding altitude, GS and vertical rate. Besides, there are no statistical differences with the raw 
database.  
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4 Feature engineering 
This section describes the modifications and adaptations required by OpenSky’s raw data to constitute 
the final database. The database building for task 3.2 demands the resolution of two complex 
problems. The first problem refers to the constitution of aircraft pairs and their scalability when the 
number of combinations increases. The second problem refers to the difficulty to simulate SI for those 
aircraft pairs. This section describes the approach developed by the authors to solve both problems. 
Figure 15 shows the flow of this process to reach a database suitable for ML.  

 

Figure 15 Flow of feature engineering process. 

All of the steps in Figure 15 are described throughout this section. Finally, the primary conclusions 
and statistical analysis of the databases are presented. 
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4.1 Data cleaning & clustering 

The first step with the path raw data is to clean them and to remove trajectories that have errors. The 
process of data cleaning is as follows:  

 Filtering of data duplicity: trajectories duplicated have been removed by applying the function 
.drop_duplicates() from the OpenSky library. 

 Erroneous paths: those trajectories with invalid ADS-B data have been removed by applying 
the function .clean_invalid() from the OpenSky library. This function detects trajectories with 
at least 10 ADS-B erroneous data.  

 NaN or missed data: missed data with the average value based on the previous and subsequent 
ADS-B data has been replaced by the function SimpleImputer(). This error arises because the 
ADS-B signal is deficient, missing some values such as velocity, altitude or position.  

 Outbound paths: trajectories that do not belong to the airspace boundaries of LSAZM567 have 
been removed from the database. 

Upon further applying this data cleaning, it is assumed the database’s data quality is sufficient. 
Although it is known the trajectories can present some inconsistencies, no reliability analysis of 
trajectories is performed. Further work should focus on ensuring the reliability of the trajectories 
extracted and cleaned from OpenSky. For this work, it is assumed the ADS-B trajectories present 
enough reliability and accuracy to be used. 

Also, it has been performed temporary clustering to handle a huge database: 

 Clustering by day: the database has been filtered to cluster the trajectories based on an 
operational day. This clustering has been performed to reduce the number of trajectories and 
computational requirements. The function filteringdays() has been created to this end. 

 Clustering by hours: the database has been filtered cluster the trajectories based on the 
operational hours. This clustering has been performed to reduce the number of trajectories 
and computational requirements. The trajectories are grouped by temporary periods where 
the meteorological and operational conditions could be the same. The function 
groupbyhours() has been created to this end.  

One day is split into 9 time periods in this work, although the user can fix those values. 
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4.2 Addition of new variables 

The next step is to generate new information that is not directly included in the raw data. This 
information is a modification of the raw data to build the final database. 

Flight identification 

In the raw database, there are several trajectories with the same callsign. This repetition is a limitation 
to the process because it is necessary to have individual trajectories. To identify the trajectories 
correctly, the function flight_id() from OpenSky is applied. 

Unwrap angles 

To avoid problems with interpreting the aircraft courses between 0º to 359º, the function unwrap() 
from OpenSky is applied.  

Wake-turbulence category 

ADS-B data do not provide information about the wake-turbulence type or the aircraft model. The 
information provided by ADS-B data to identify the aircraft is the icao24 and the callsign. With this 
information can be identified the aircraft model but the wake-turbulence type not. For that purpose, 
it is necessary to access the ICAO’s document 8643 [55]. This document links the information about 
the icao24 with the manufacturer mode, aircraft type and wake-turbulence type. OpenSky provides a 
database to deal with this information, although they do not directly link the icao24 with the wake-
turbulence category. The function add_WT() has been developed.  

A139 B407 B78X C650 DH8D F5EX GL6T P180 
A20N B733 BCS1 C680 DIMO F900 GLEX P28A 
A21N B734 BCS3 C68A DR40 F9DX GLF4 P28B 
A306 B736 BD-700-1A11 C750 E170 F9EX GLF5 P68 
A318 B737 BE20 C77R E190 F9LX GLF6 PA46 
A319 B737 BE40 CL30 E195 FA7X GLID PC12 
A320 B738 C17 CL35 E35L FA8X H25B PC21 
A321 B739 C172 CL60 E50P Falcon7X H900 PC24 
A332 B744 C182 CL61 E545 FOX HUSK PRM1 
A333 B748 C210 CL64 E550 G150 J3 PULS 
A339 B752 C25A CL65 E55P G200 KODI R66 
A343 B753 C25B CL85 E75L G280 LJ35 RF6 
A346 B762 C25C CLON E75S G2CA LJ36 RJ85 
A359 B763 C25M CRJ-1000 EC20 G300 LJ40 RV7 
A35K B764 C510 CRJ2 EC45 G450 LJ45 S22T 
A388 B772 C525 CRJ9 EVSS G550 LJ55 TB20 
AS50 B77L C550 CRJX F2EX G650 LJ60 TLEG 
ASTR B77W C55B DC3 F2LX G650ER LJ75  
AT43 B788 C560 DG1T F2TH GA5C MD11  
AT72 B789 C56X DG80 F2TS GL5T MM16  

Table 5 Aircraft models identified in the LSAZM567 database. 
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However, not every aircraft model is included in the databases, or some are erroneously identified. 
Around 1000 icao24 identifiers were detected, and over 150 cannot be linked to its wake-turbulence 
category. A new wake-turbulence category (denoted as ‘U’) was added to group all of those aircraft. 
Further work should improve this process to avoid any aircraft identified as U wake-turbulence 
category. On the other hand, 157 aircraft models (see Table 5) were identified, and just 12 could not 
be identified based on the icao24.  

 

4.2.1 Relative variables between aircraft pairs 

The last information to include in the database is the outcomes from the operational analysis of aircraft 
pairs. The relative variables are detailed in Appendix A.2. They acquire different values depending on 
the Static or Dynamic mode. For the Static mode, they only consider the information at the initial 
instant when one aircraft pierces into the airspace. This information is only considered because it is 
when the prediction is performed. The Dynamic mode calculates the relative variables at each 
timestamp at which operational information is available. The mathematical description of the relative 
variables is: 

 Horizontal separation (𝑠௜,௝(𝑡)): horizontal separation at time 𝑡 between positions of an 
aircraft pair:  

𝑠௜,௝(𝑡) = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛௜(𝑡) − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛௝(𝑡) ( 5) 

 Vertical separation (∆ℎ௜,௝): Altitude separation (ℎ௜ , ℎ௝) between an aircraft pair. 

∆ℎ௜,௝(𝑡) = ℎ௜(𝑡) − ℎ௝(𝑡) ( 6) 

 Course (𝛾௜,௝): Course that links the position between an aircraft pair.  
𝛾௜,௝(𝑡) = 𝛾௜(𝑡) − 𝛾௝(𝑡) ( 7) 

 Track variation (∆𝜃௜,௝): Track variation (𝜃௜, 𝜃௝) between an aircraft pair 
∆𝜃௜,௝(𝑡) = 𝜃௜(𝑡) − 𝜃௝(𝑡) ( 8) 

 GS variation (∆𝐺𝑆௜,௝): Difference in module of the GS (𝐺𝑆௜, 𝐺𝑆௝) between an aircraft pair. 

∆𝐺𝑆௜,௝(𝑡) = ห𝐺𝑆௜(𝑡) − 𝐺𝑆௝(𝑡)ห = ට൫𝐺𝑆௜
௫ +  𝐺𝑆௝

௫൯
ଶ

+ ቀ𝐺𝑆௜
௬

+ 𝐺𝑆௝
௬

ቁ
ଶ

  ( 9) 

 Vertical rate variation (∆ℎప,ఫ
̇ ): Variation of the vertical rate (ℎప̇, ℎఫ̇) between an aircraft pair.  
∆ℎప,ఫ

̇ (𝑡) = ℎప̇(𝑡) − ℎఫ̇(𝑡) ( 10) 

The relative variables are calculated with the function relativevariablescalculation(). The library 
geographiclib is used to calculate the headings and separations based on the aircraft positioning (from 
longitude and latitude). This library performs the calculations without transforming the aircraft 
positioning to Cartesian coordinates [56]. 
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4.3 Generation of customised aircraft pairs 

This section describes the process followed to generate customised aircraft pairs. The aircraft pair 
underlies the pillars to analyse SI. The aircraft pair generation is different for the Static and Dynamic 
mode. The reasoning is explained in detail in this section regarding the characteristic of the Static and 
Dynamic mode.  

 

4.3.1 Generation of aircraft pairs for Static mode in the same temporary 
period 

The Static mode performs SI predictions when one aircraft pierces in the airspace. The database must 
be developed according to this operational concept. The main problem to build a database with 
enough SI is real trajectories barely provide samples. It is required to modify the trajectories flown to 
force situations in which an SI would have emerged. The average flight time in LSAZM567 airspace is 
about 11 minutes; then, it is required to modify the airspace's entry time. To group in the same time 
period, the trajectories imply the possibility of emerging SI between aircraft pairs that would not have 
appeared under real circumstances. This temporary modification allows considering for each aircraft 
pairs multiple situations piercing the airspace. It only evaluates the aircraft that are within the airspace 
sector. Two functions have been developed to achieve this goal: 

1) Generatepairs_STATIC(): it generates every aircraft pair to evaluate for the Static mode. 
2) DifferentEntryTime_STATIC(): it modifies the aircraft's entry time as a function of the selected 

aircraft that pierces into the Static mode's airspace.  

The control variable of both functions are (𝑡௘௡௧௥௬
௜௡௜௧ , 𝑡௘௡௧௥௬

௘௡ௗ ). 𝑡௘௡௧௥௬
௜௡௜௧  indicates the initial time an aircraft 

can pierce the airspace and 𝑡௘௡௧௥௬
௘௡ௗ  indicates the last time an aircraft can pierce the airspace.  

Suppose there is a sample of 𝑛 trajectories that generates (𝑛 − 1)𝑛 aircraft pairs. For each aircraft 𝑖 
are generated (𝑛 − 1) aircraft pairs to evaluate. The aircraft 𝑖 is selected to pierce the airspace at the 
fixed time 𝑡௔೔

 and the rest of the aircraft modifies their entry times at time 𝑡௔ೕ
 between the above 

limits. The temporary restriction is that the aircraft should be within the airspace when the aircraft 𝑖 
pierces the airspace, the limits 𝑡௘௡௧௥௬

௜௡௜௧  and 𝑡௘௡௧௥௬
௘௡ௗ  should ensure that condition. Aircraft outside the 

airspace that will pierce after the aircraft 𝑖 are not considered. The new entry times are calculated 
randomly for each aircraft. Then, 𝑛 − 1 aircraft associated with aircraft 𝑖 pierces into the airspace 
before the aircraft 𝑖 and randomly between specific time boundaries. This process provides new 
conditions to ensure potential interactions between aircraft pairs in the airspace. Figure 16 represents 
the aircraft-pair generation for the Static mode.  
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Figure 16 Aircraft-pair generation for Static mode. 

Besides, this process is repeated for every aircraft considered in the same time period. The main 
characteristic of aircraft-pair generation is the process that generates for each aircraft a set of 𝑛 − 1 
aircraft pairs.  

 

4.3.2 Generation of aircraft pairs for Dynamic mode in the same temporary 
period 

The Dynamic mode considers the aircraft's evolution within the airspace, not only when the aircraft 
pierces. It considers aircraft that pierces into the airspace later than the aircraft in consideration. In 
addition, the Dynamic mode considers a 4DT prediction is available to be used by the system. This work 
considers the ADS-B trajectories stored in OpenSky to be used as 4DT predictions. If the system would 
have more accurate predictions, the process will be the same.  

The Dynamic mode requires a similar function to generate aircraft pairs with some modifications. In 
the Static mode, an aircraft 𝑖 pierces the airspace in the time 𝑡௜ and analyses the conditions of the 
different aircraft that are already within the airspace. This process is repeated for every aircraft, 
building the database with the information when aircraft 𝑗 pierces the airspace. The Dynamic mode is 
broader because it does not consider only the aircraft within the airspace, but also the aircraft will 
pierce later (with temporary limits). Therefore, every aircraft modifies its entry time randomly 
between the temporary boundaries (𝑡௘௡௧௥௬

௜௡௜௧ , 𝑡௘௡௧௥௬
௘௡ௗ ). Two functions have been developed to achieve 

this goal: 

1) Generatepairs_DYNAMIC (): this function generates aircraft pairs for the Dynamic mode. 
2) DifferentEntryTime_DYNAMIC(): this function modifies the aircraft's entry time between some 

temporary boundaries for the Dynamic mode.  

Similar to the Static mode, the control variable of both functions are (𝑡௘௡௧௥௬
௜௡௜௧ , 𝑡௘௡௧௥௬

௘௡ௗ ). Suppose that 
there is a sample of 𝑛 trajectories that generates (𝑛 − 1)𝑛 aircraft pairs. For each aircraft 𝑖 are 
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generated (𝑛 − 1) aircraft pair to evaluate. The temporary restriction is that every aircraft should be 
in the airspace between the limits 𝑡௘௡௧௥௬

௜௡௜௧  and 𝑡௘௡௧௥௬
௘௡ௗ . The new entry times are calculated randomly for 

each aircraft. This process provides new conditions to ensure potential interactions between aircraft 
pairs in the airspace, as Figure 17 represents.  

 

 

Figure 17 Aircraft-pair generation for Dynamic mode. 

Each ADS-B trajectory receives a 4DT prediction based on similarity, as described in section 2.4.2. This 
4DT prediction receives the same entry time as the 4DT to ensure compatibility between them. Finally, 
this process is repeated for every aircraft during the time period considered avoiding duplicities.  

 

4.3.3 Features adding 

The next step is to join the customised trajectories for every aircraft pair based on the timestamp. 
Then, the last step is to calculate the relative variables for each aircraft pair. There are different 
functions for the Static and Dynamic mode, although the principles are the same. The main difference 
between the modes is the notation and the information provided. The Static mode provides 
information only about when one aircraft pierces into the airspace, and the Dynamic mode provides 
information throughout the trajectory evolution. Table 6 shows the features included for each aircraft 
pair (𝑖, 𝑗). 

The function generatorDFconflicts_STATIC() associates the features of aircraft 𝑖 when pierces the 
airspace and the features of aircraft 𝑗 at the same timestamp. The function 
generatorDFconflicts_DYNAMIC() associates the features of aircraft 𝑖 and the features of aircraft 𝑗 at 
the same timestamp. This process is iterative for every timestamp that the aircraft coincide at the 
airspace. When both aircraft do not operate at the same timestamp within the airspace, the function 
fills the NaN gaps. Once finalised the whole process, NaN samples are removed. This process is 
repeated for 4DT predictions of the Dynamic mode. After the assembling, the relative variables 
between aircraft are calculated by the function relativevariablescalculation(). This function works for 
Static and Dynamic mode.  
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For aircraft 𝒊, 𝒋 (22 
features) 

For each aircraft pair (6 features) 
in Static mode 

For each aircraft pair (6 features) 
in Dynamic mode 

Altitude Initial horizontal separation Var horizontal separation 

Groundspeed Initial vertical separation Var vertical separation 

Latitude Initial azimuth variation Var azimuth 

Longitude Initial ground speed variation Var ground speed 

Timestamp Initial track variation Var track 

Track Initial vertical rate variation Var vertical rate 

Vertical_rate   

Flight_id   

WT   

Track_unwrapped   

Table 6 Features addition by aircraft pair generation. 

Figure 18 shows the data pre-processing process for the Static Mode. This process is the summarise of 
the different tasks performed previously. First, the ADS-B data is obtained for two aircraft. This ADS-B 
data is cleaned and joined to generate the aircraft pairs. Then, the relative variables are calculated and 
integrated into the label of each aircraft pair. Finally, this data can be provided to the ML model to 
predict new instances.  
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Figure 18 Data pre-processing process from ADS-B to ML model for the Static mode. 

Figure 19 shows the data pre-processing process for the Dynamic Mode. This process is the summarise 
of the different tasks performed previously. First, the ADS-B data is obtained for two aircraft. This ADS-
B data is cleaned and joined to generate the aircraft pairs. Then, the relative variables are calculated 
and integrated into the row of each aircraft pair. Simultaneously, similar trajectories are obtained from 
the ADS-B trajectory database to work as 4DT predictions for the aircraft pairs. Safety metrics are 
calculated for the 4DT predictions and joined with the real ADS-B information. Finally, this data can be 
provided to the ML model to predict new instances. 

 

Figure 19 Data pre-processing process from ADS-B to ML model for the Dynamic mode. 
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4.4 SI and safety metrics analysis 

Once the trajectories have been customised and paired, the next step is to analyse each aircraft pair's 
separation. These temporarily modified trajectories constitute a good standpoint to explore what 
could have happened if these trajectories were flown. The goal is to identify SI between aircraft pairs 
and the safety metrics of those situations. Finally, a database with enough SI samples is expected to 
be constituted for the ML algorithms application. Different sections are provided for each mode. 

 

4.4.1 Separation analysis for Static mode 

The Static mode builds a database in which each sample represent an aircraft pair. Then, separation 
analysis of Static mode must provide information about SI and safety metrics. This information about 
the evolution of the separation is added to the database for each aircraft pair. This isolated sample of 
each aircraft pair contains all information about the separation evolution throughout the airspace 
(safety metrics).  

To this end, it is necessary to evaluate the horizontal and vertical separation throughout the trajectory. 
Currently, OpenSky’s API [53] provides a function to calculate the evolution of the separation between 
aircraft denoted as closest_point_of_approach(). This function compares an aircraft pair's trajectories, 
calculating at each timestamp the horizontal and vertical separation. The function performs first 
filtering to consider whether the aircraft will cross with some horizontal and vertical separation 
previously indicated. The aircraft that do not fulfil this condition are discarded. Therefore, the control 
variables of this function are horizontal_separation and vertical_separation. These control variables 
do not match the horizontal and vertical separation minima (5 NM and 1000 ft). It is more convenient 
to select higher parameters to obtain a larger number of samples. In this work, those values were 100 
NM and 5000 ft, respectively.  

However, this function presents two limitations for this work: 1) it demands the knowledge of the ADS-
B trajectory prior to evaluating the trajectories, and 2) this function only provides the information of 
the aircraft pairs that infringe the control variables, i.e., they do not provide information when the 
aircraft cross further than the control variables. This is the reason separations so high for the control 
variables have been selected. Therefore, this function can be used for the Static mode but not for the 
Dynamic mode. 

The output of the function closest_point_of_approach() is a data frame that provides the information 
about the lateral and vertical separation for each timestamp. With this data frame it is possible to 
calculate the safety metrics defined in section 2.2.2. This process is not straightforward and has 
required the development of several functions to extract the information. The functions 
pairswithconflict(), conflictdetection() and mod_conflicts() provide the safety metrics for each aircraft, 
classifying them as SI or no SI. This information is included in each sample and constitutes all the ML 
algorithms' information: features plus labels. 
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Figure 20 Example of safety metrics results. 

Figure 20 shows an example of the safety metrics obtained for each aircraft pair. There are aircraft 
pairs that constitute SI (1) and no SI (0). Aircraft pair of row 3 reaches a MinDis of 6.8 NM in 33 NM or 
266 seconds. The separation analysis is performed for all aircraft pairs and repeated for every 
temporary period and day. When new trajectories are available, the database will be feed with new 
situations that the ML model could consider. 

The main downside is the high computational time required to evaluate the aircraft pairs. For 
LSAZM567 airspace, it was needed to cluster the aircraft based on the days and different temporary 
periods. Table 7 shows the results of one-week simulations for the Static mode. 

Number of aircraft 5849 

Number of pairs generated 551275 

Number of pairs evaluated 507731 

Number of SI (%) 24374 (4.8%) 

Number of conflicts (%) 10188 (2%) 

Computational time (hours) 634 

Table 7 Results of one-week simulations for Static mode. 

The number of aircraft for one week through the airspace LSAZM567 is 5849. The number of pairs 
generated is far from the real combinatorial number of aircraft pairs because the simulations were 
performed for specific time periods. The number of aircraft varies during the time periods from 80 to 
120. There is a difference between the number of pairs generated and evaluated (around 8%). There 
are aircraft pairs not assessed because they do not share the LSAZM567 airspace during the same time 
period. The number of SI detected is about 5% and the number of conflicts about 2%. These results 
confirm the strong imbalance of the database. 

 

4.4.2 Separation analysis for Dynamic mode 

The Dynamic mode updates the information on the safety metrics throughout the 4D trajectory. It also 
provides information about safety metrics expected from the 4DT predictions. The Dynamic mode 
provides for each aircraft pair so many samples as timestamps recorded in the database.  
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Conversely to Static mode, the function closest_point_of_approach() developed by OpenSky is not 
recommendable for this analysis because it does not store the whole set of points throughout the 
trajectory. Hence, a new function called conflict_detection() has been developed. The concept of the 
function is similar but trying to solve some drawbacks and optimising the separation analysis. The 
function evaluates the separation for each timestamp between an aircraft pair and analyses the 
separation evolution metrics. The main difference is this function stores all the information generated 
for each aircraft pair throughout the airspace. The control variables are now three: 
horizontal_separationminima, vertical_separationminima and distance_interest. The values are 5 NM, 
1000 ft and 10 NM and can be specified by the ANSP. The distance of interest is the fixed value that 
characterises a situation as SI or no SI.  

This analysis is performed for every aircraft pair considered in the same time period. Based on the 
trajectories, it is calculated the minimum separation reached, distance and time to MinDis. Based on 
the minimum separation position, it can be calculated the distance to this position and the time. These 
safety metrics are added to the aircraft pair database and classified as SI and no SI. Therefore, safety 
metrics acquire a dynamic value depending on the timestamp the situation is evaluated. Figure 21 
shows an example of the results. 

 

Figure 21 Example of results of the function conflict_detection(). 

This figure shows an example of the function conflict_detection() with the results for the aircraft 
AFR82PQ_003 and AFR94LA_004. Although it does not appear in the figure, the relative variables 
described in section 4.3.3 are stored. This calculation is an iterative process that must be repeated for 
the temporary periods the database is split into and the number of days considered.  The database 
could be increased when new aircraft were introduced. Lastly, the computational time required is 
lower than the Static mode, but it is still very high. Table 8 shows the results for the whole simulations 
performed for one week.  

The number of pairs generated is far from the real combinatorial number of aircraft pair because the 
simulations were performed for specific time periods. The number of aircraft pair varies during the 
time periods from 80 to 120. The number of SI detected is about 18% and the number of conflicts 
about 4%. These values are higher than the Static mode, although they are far from constituting a 
balanced database. These results represent the problem of generating separation infringements in 
spite of performing specific simulations. To increase these rates, the solutions would be to perform 
simulations only for pairs of air traffic flows (something studied in this work, but it was not possible 
due to the inefficiencies of clustering algorithms) and reduce the size of the airspace to consider. 
Additionally, the computational time gives an idea of the problem due to the high number of hours 
required. 
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Number of aircraft 5849 

Number of pairs generated 551275 

Number of pairs evaluated 183762 

Number of SI (%) 1235648 (18%) 

Number of conflicts (%) 266323 (4%) 

Computational time (hours) 420 

Table 8 Results of the simulations for the Dynamic mode. 

4.5 Final database 

This section shows the outcomes of the final database that the ML algorithms will learn. Every 
simulation has been performed in a computer Intel® Core™ i5-6600 CPU @ 3.30GHz, RAM 8,00 GB, 64 
bits. 

 

4.5.1 Database for Static mode 

The Static mode database has been generated based on a sample of 15 days between 20 June and 3 
July 2019. It was not feasible to analyse more traffic due to the high computational cost in terms of 
workload and time. The total time to perform all the simulations of the 15 days split into the temporary 
periods (without considering erroneous simulations) was around 1200 hours (50 days). About the size 
of the database: 

 Database weight: around 520 MB.  
 Number of samples: 520605 samples. Each one of the samples represents an aircraft pair 

situation. 

Regarding safety metrics results, Figure 22 shows the distributions obtained: 

 

Figure 22 Histograms of safety metrics for the Static database. 

The MinDis provides a smooth distribution for every sample from 0 to 100 NM, although there is a 
slight increment from 10 to 20 NM. It can be identified that the number of samples SI and no SI is 



CONFLICT DETECTION MODULE   

 

 

51

 

 

entirely unbalanced.  DistoMinDis provides information about the distance that must cover the aircraft 
that pierces the airspace to reach the MinDis. The vast majority of the samples is located near zero. 
This implies that a large number of aircraft are moving away in the airspace. TimetoMinDis provides 
information about the time required to reach the MinDis. It presents a similar distribution to 
DistoMinDis, in which a large number of aircraft are moving away in the airspace. 

 

4.5.2 Database for Dynamic mode 

The Dynamic mode database has been generated based on a sample of 15 days between 20 June and 
3 July 2019. It was not feasible to analyse more traffic due to the high computational cost in workload 
and time. The total time to perform all the simulations of the 15 days split into the temporary periods 
(without considering erroneous simulations) was around 850 hours (36 days). It has been achieved a 
significant reduction in the computational time compared with the Static mode. About the size of the 
database: 

- Database weight: 4.2 GB. This database is four times bigger than the Static database. 
- Number of samples: 6753283 samples. Each one of the samples represents an aircraft pair 

situation at a specific timestamp. The number of samples is over ten times the Static database. 

Regarding safety metrics results, Figure 23 shows their distributions: 

 

Figure 23 Histograms of safety metrics for the Dynamic database. 

The range of MinDis distribution is from zero to over 150 NM. The larger density is located between 
10 to 20 NM, similar to the static database. There is also a high imbalance between SI and no SI 
samples. However, the number of SI samples is about 18%, while the Static mode was 5%. Both 
DistoMinDis and TimetoMinDis provide similar distribution between them. The density decreases 
softly as the variable increases. Besides, the range is identical to the Static mode. Figure 24 shows the 
results of the safety metrics for ADS-B and resampled trajectories jointly.  

   
Figure 24 Comparison of safety metrics for ADS-B and resample database for Dynamic mode. 
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The distribution of both databases is similar, as was expected. The main difference is that ADS-B data 
presents more continuous behaviour while the resampled trajectories provide peaks throughout the 
distribution. Those peaks focused on the update period of the resample technique selected.  
 

4.6 Problems identified during the database building 

This section brings to light the main problems or issues identified during the data treatment from 
OpenSky, separation analysis and building of the final databases: 

 Reliability of ADS-B data. This is a problem not analysed directly in this work, but it affects the 
database integrity. It has been identified non-reliably ADS-B data during the process, such as 
null-velocity or altitude over FL1200. This type of data was discarded, but it is necessary to 
provide a completely reliable database. 

 Trajectory data-size. Typically, trajectories provided by OpenSky have information about each 
second. This means that one trajectory that flights through LSAZM567 over 10 minutes provide 
600 ADS-B data. However, there are trajectories with more than 2000 ADS-B data. This issue 
affects the computational time required to evaluate the possible combinations. 

 Airspace size. The filtering of the trajectories to the LSAZM567 airspace was not perfect. 
Trajectories identified outside the airspace boundaries were removed, although it would be 
better to improve the filtering process.  

 Lack of separation infringements. The current status of the trajectories does not work for the 
analysis of conflicts based on ADS-B data. This is a typical issue because the number of conflicts 
is deficient. It would be desirable to develop a public database with enough conflicts or SI that 
researchers could handle.  

 Aircraft clusters. It has been necessary to perform aircraft clustering based on days and 
temporary periods. The goal was twofold: to reduce the computational time and consider 
aircraft operating with similar weather conditions.  

 Weather. This work did not consider weather variables (such as temperature, wind, humidity, 
etc.) as features. This information was implicitly contained in the ADS-B data. Further work 
could introduce this type of variables to improve the database.  

 Conflict at time 𝑡 = 0. By modifying the entry time of the aircraft to operate in a similar time 
period, conflicts between aircraft at time 𝑡 = 0 appeared. In other words, an aircraft pair 
pierces the airspace infringing the separation minima. This type of situations has been 
discarded because it should not exist in reality. It would imply that the ATCOs of the previous 
sector would not have done their labour correctly.  

 Computational time. One of the main limitations of this work has been the computational time 
and workload required to perform the simulations. 
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5 ML approach 
One of the current technological developments in the implementation of data-driven techniques is ML 
techniques. ML is one of the data-driven techniques being investigated in different areas. ML's goal is 
to understand the structure of data and fit that data into models that can be used to perform 
predictions. This work focuses on introducing ML techniques to help the air traffic controllers during 
monitoring tasks, particularly in conflict detection. The goal of this section is to describe the approach 
used in this work by using ML techniques. Section 6 provide the results of the application of these 
techniques.  

ML models are already implemented in different platforms of computer science. The most extended 
are Python® and MatLab®, although others can be used. Each one of these platforms is developing 
libraries for different ML algorithms. Therefore, the application of ML algorithms has become a user-
friendly task. This work aims not to use all ML algorithms but to analyse the feasibility of their usage.  

How is evaluated the performance of the ML model? The answer is different for classification and 
regression problems because the metrics are different. Classification metrics focus on assessing the 
level of accuracy in the classification predictions. It is important to note that the whole dataset's 
accuracy is not the best metric for unbalanced problems. The most typical classification metrics are 
accuracy, recall, precision and F2. Regression metrics are different because they evaluate the ML 
model's performance based on the statistical differences between the predicted and the measured 
numerical value. The most typical regression metrics are the Mean Average Error (MAE) and Root 
Mean Squared Error (RMSE).  

 

5.1 Generalization problem: underfitting and overfitting 

An ML model's performance is evaluated by splitting the dataset into two sets: training and testing (or 
validation). In this way, the ML model is trained with the training set and compared its performance 
with new testing instances. Typically, the ML model's performance in the training set compared with 
the testing does not match. This is one of the ML techniques problems once they are trained in a 
specific dataset. A dataset is provided to the ML algorithm so it can learn the underlying structures to 
perform predictions. Two situations can occur overfitting or underfitting [31].  

Overfitting appears when ML's model is too complicated relative to the amount and noisiness and fits 
the training data. Nonetheless, it worsens with the validation set. The possible solutions are to simplify 
the ML model by selecting one with fewer variables, gathering more training data or reducing the 
train/test split, or reducing the noise or impurities in the training data (removing data errors and 
outliers). Regularization is the process of constraining the ML model to simplify it and reduce the risk 
of overfitting. The hyperparameters of the ML model control regularization. The hyperparameter is a 
parameter of the ML algorithm (not a feature) and must be specified prior to the training process. The 
error rate on new cases is called the generalization error. The error rate is calculated by evaluating the 
ML model on the validation or testing set. This value is calculated by the difference between the 
training and the testing set metrics, and it should be the lower as possible. If the training error is low 
and the testing error is high, the model is overfitting the training data.  
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Underfitting is the opposite of overfitting. Underfitting occurs when the ML model is too simple or not 
enough complex to learn the underlying structure or patrons of the data. Underfitting provides poor 
results in the different metrics of the ML models. It should be solved by selecting more complex models 
(increasing the number of parameters), providing more features to the learning algorithm or modifying 
the regularization hyperparameters.  

Cross-validation (CV) is the most extended technique to avoid this issue and validate the model's real 
performance. This work uses the K-fold CV technique. This technique divides the whole dataset into k 
folds. One of the folds is used as a validation set, and the rest constitutes the training set. This process 
is repeated, interchanging the different groups as the validation set. Hence, it can be evaluated an ML 
model in so many data sets as k-folds are. Hence, CV avoids overfitting because a different model is 
trained in one particular training set and evaluated for each split's specific validation set. Lastly, one 
important factor to consider is CV must be performed applying the random distribution of samples at 
each fold (shuffle) and keeping the dataset class's statistical distribution (stratification).  Figure 25 
shows an example of a 5-fold CV.  

 

Figure 25 Cross-validation structure. 

 

5.2 Unbalanced classification problems 

As previously mentioned, unbalanced classification problems are those that one category 
predominates over the others, i.e., the classes are not represented balanced or equally. This is a typical 
problem in classification problems because the equal representation of different classes does not 
occur in real-life issues. Conflict detection is one of this type of problems similar to fraudulent 
transactions or cancer detection. Conflicts appear rarely and, although we have performed simulations 
to generate SI between trajectories, the SI rate is reduced (5% of samples for Static mode and 18% for 
Dynamic mode).  
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The issue of working with unbalanced sets is called the ‘accuracy paradox’ [57]. The accuracy paradox 
is the paradoxical finding that accuracy is not a suitable metric in predictive analytics. A simple model 
may present a higher accuracy level by predicting all samples as the majority class. This is the reason 
accuracy cannot be the only metric for classification problems. Recall, precision, and F1 focus on the 
minority class, representing this problem's core [58]. Achieving 99% classification accuracy without 
considering recall or precision behaviour may be trivial on an unbalanced problem. 

There are several techniques to tackle the problem of unbalanced classification [59]: 

- Undersampling. This technique implies selecting a subsample of the majority class such that 
the size matches the minority class. This technique's primary problem is that much information 
is lost, and it could imply scalability issues with the dataset.  

- Oversampling. This technique produces artificial or synthetic instances of the minority class 
until the proportion is balanced. This technique is popular, but the problem is about the way 
of making the instances.  

- One Class Learning. This technique considers that the real points compose the minority class. 
The majority class is random noise that produces disturbances in the dataset. 

- Cost-Sensitive techniques. The cost function analyses the impact of misclassifying the samples 
in the dataset. Typically, the cost function equally considers the cost of different misclassifying 
classes. However, the weights for the cost function can be modified in order to increase the 
impact of misclassifying the minority class. Then, the algorithm can reduce the 
misclassification of the minority class. For instance, if the class distribution is 0.99/0.01 for the 
majority and minority classes, it can be balanced by considering a penalty of 0.99 for errors 
made with the minority class.  

In this work, undersampling will be used to specify the best performance limits in terms of recall, 
precision, and F1 metrics. Cost-sensitive training techniques are applied to improve the results for 
unbalanced problems potentially. 

 

5.3 Preparation of the dataset to ML algorithms 

ML techniques should not be directly applied to the database without pre-processing the data. This 
pre-processing or data preparation aims to adequate the data into formats that ML algorithms could 
handle. The primary purpose of data preparation is to manipulate, modify and transform the data that 
will be analysed so that the information can be accessible for the ML algorithm. The tasks applied 
during the data pre-processing are the following: 

- Training\Validation\Testing split: The dataset is divided into the training dataset, the 
validation dataset and the testing dataset. The validation dataset serves as a proxy for new 
data. The validation dataset (also known as the hold-out set) is not used in model training and 
hence can be used to evaluate metrics and determine if the model has overfitted the data. It 
is also used to optimise the ML model. Then, the optimised model is trained with the training 
and validation dataset and evaluated with the testing dataset. The goal is to build a model that 
generalizes well to unseen data, in this case, the testing dataset. For every experiment, the 
databases were split into three sets: Training set (70% of 90% of the whole database to train 
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the model), validation set (30% of 90% of the entire database to optimise the model) and 
testing set (10% of the whole database to analyse the final performance of the model).  

- One Hot Encoding: Numeric or categorical variables can group features. ML algorithms cannot 
handle categorical data, and it must be transformed into numeric values. In One Hot Encoding, 
each categorical level becomes a separate feature containing binary values (1 or 0). For 
instance, wake-turbulence type can acquire four categories: Light, Medium, Heavy or 
Unknown. Then, one feature is transformed into new four features. This process means new 
variables are generated for each one of the values of the categorical variables. 

- Normalization: Normalization rescales the values of numeric columns in the dataset. It does 
not distort differences in the ranges of values. There are several methods available for 
normalization, although, in this work, zscore has been selected. Zscore normalizes the 
numerical values of each variable by fitting to a normal distribution. 

- Shuffling: It distributes the samples randomly into the training, testing and validation sets.  
- Stratification: In addition to distributing the samples randomly, the stratification process 

allows distributing them to keep the classes' statistical distributions. The stratification variable 
considered in this work is the safety metric SI.    
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5.4 ML experiments 

There is no one-size-fits-all value that ensures that an ML algorithm makes good or poor predictions. 
Regarding classification models, the 100% rate in the different metrics is an academic goal but rarely 
achieved. Typically, metrics over 80% can mean good or acceptable performance, and over 90% mean 
represent outstanding models. These values must be adapted to each problem because it depends on 
the ML model finality.  

Classification models reach their best performance when the database is equally distributed among 
the classes. Then, it has been considered an ML model to provide reference values or best user metrics 
based on an ad-hoc 50% balanced dataset. Although it does not exist undersampling techniques for 
regression problems, it has been evaluated as well as the regression models for this experiment. 
Besides, it has been considered a Hybrid model in which a filtering process based on operational 
restrictions is introduced to reduce the dataset's strong imbalance. Therefore, three experiments have 
been analysed for classification and regression models: 

1. Experiment 0 or Reference model. ML model with undersampling techniques. This model 
represents the theoretical best model performance for classification because the database is 
balanced. 

2. Experiment 1 or Pure model: ML model applied to the whole database without any 
modification. 

3. Experiment 2 or Hybrid model: ML model applied to a database previously filtered. The 
filtering is performed based on operational restrictions. The database only contains aircraft 
pairs that cross with horizontal separation minor than 20 NM and vertical separation minor 
than 1000 ft. This experiment's main problem is it demands implementing the aircraft pair's 
previous filtering during the implementation process. 

Aiming to analyse different ML algorithms and to obtain the best one for each one of the three 
experiments, Figure 26 shows the steps followed during the ML process: 

1. Analysis of different ML algorithms. The first step is to evaluate the performance of different 
ML algorithms in order to identify the ML model that provides better results. It has been 
assessed 15 ML algorithms for classification and 17 algorithms for regression. 

2. Feature selection. The feature selection aims to identify the influence of the different features 
that constitute the database. The feature selection is performed based on graphical analysis 
and Recursive Feature Elimination (RFE) with CV [60]. RFE analysis evaluates which are the 
impact of the features on the model accuracy. Finally, features that do not influence the ML 
model are removed from the database.   

3. ML algorithm optimisation. An optimisation process to improve the selected ML algorithm's 
performance is performed based on a hyperparameters grid search. Hyperparameters can be 
defined as the settings of an algorithm that can be adjusted to optimise the model 
performance. Hyperparameters must be defined in advance of the training process of the 
model. The metric to optimise is different for the classification and regression problem.  

4. ML model finalisation. Once the ML algorithm is optimised, it will be finalised by training the 
ML algorithm with the whole dataset (training and validation set). The finished model 
represents the model that will be implemented in further work.  
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Figure 26 ML process for experiments. 
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6 ML Results 

6.1 ML predictor for the Static Mode 

This section provides the results of the Static mode. This mode is characterised because it gives a static 
SI prediction when one aircraft pierces into the airspace. As explained in section 5.4, three experiments 
have been carried out. The Reference model provides the theoretical best result (balancing SI and no 
SI samples). The Pure model considers the whole dataset, and the Hybrid model performs an 
operational filter to focus on aircraft pairs that approach a distance lower than 20 NM and 1000 ft. 
Table 9 shows the number of samples for each experiment; in parenthesis, the SI/no SI samples rate. 

 Training set Validation set Test set 

Reference model (50/50) 77246 33106 12262 

Pure model (5/95) 792033 339444 125720 

Hybrid model (35/65) 112463 48199 17852 

Table 9 Number of samples of each experiment for the Static mode. 

Appendix B details the process to obtain the results of the Pure model for classification techniques.  

 

6.1.1 ML results for classification 

ML classification techniques perform prediction whether an aircraft pair is SI or not, and the probability 
of this prediction. The issue for the classification problem is the strong imbalance of the database; the 
database only contains 5% SI samples.  

The first step was to analyse different ML algorithms' performance, aiming to identify the best one. 
Accuracy is not a valuable metric for unbalanced problems because they focus on the predominant 
class. Then, the main metrics to analyse are recall, precision and F1. The three experiments agreed 
that ensemble models provided the best results. For each experiment, the three top ML models vary 
between Random Forest, Extra trees, Decision Tree and Extreme Gradient. Random Forest provided 
the best results for the reference and Hybrid model, although the decision tree provided the Pure 
model's best results. The models were evaluated based on stratified CV techniques to avoid overfitting 
on the results. The values obtained with the training set were compared with the validation set, which 
provided similar results.  

The second step was to perform the feature selection. Three experiments provided similar results, 
although with some differences: 

- Reference model. The most influential features were initial separation, initial azimuth and 
tracks; they encompass almost 40% of the ML importance. On the other hand, RFE confirmed 
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that Wake-turbulence type and vertical rate variables should be discarded due to their low 
influence.  

- Pure model. The most influential features were initial separation, initial azimuth, altitude 
variation and tracks; they encompass almost 50% of the ML importance. On the other hand, 
RFE confirmed that Wake-turbulence type and vertical rate variables should be discarded due 
to their low influence. 

- Hybrid model. The feature importance is shared between almost ten features, although the 
most influential features were initial separation and azimuth (20% of the ML importance). On 
the other hand, RFE confirmed that Wake-turbulence type, vertical rate and altitude variables 
should be discarded due to their low influence. 

The three experiments concluded that initial separation, azimuth, altitude variation, and tracks were 
the most influential. The least influential features were the wake-turbulence type and vertical rate 
variables. Upon further removing the least influential variables, results confirmed that models with 
minor features provided worse values. The performance metrics worsen their value by about 1% with 
feature removing. This worsening implies that removing the least influential features on the model is 
feasible and can reduce computational cost.  

The next step was the optimisation process of the ML algorithm. The goal of this process was to 
optimise the classification metrics F1 and recall of the model. The optimisation process has been 
performed, applying cost-sensitive techniques to the Pure and Hybrid model. Cost-sensitive learning 
takes the costs of prediction errors into account during the training process. The model penalizes 
misclassification errors from the minority class more than the majority class. Table 10 shows the 
different optimised models' results on the training set by applying the 5-fold CV.  

Experiment Model Optimizer Accuracy AUC Recall Precision F1 

Reference 
model 

Non-optimised Model - 0.920 0.971 0.945 0.888 0.920 

Optimised Model 
Recall 0.912 0.967 0.953 0.880 0.915 

F1 0.921 0.972 0.949 0.900 0.923 

Pure model 

Non-optimised Model - 0.958 0.780 0.570 0.585 0.577 

Optimised Model 
Recall 0.960 0.800 0.561 0.602 0.576 

F1 0.960 0.801 0.558 0.608 0.580 

Optimised Cost-sensitive 
Model 

Recall 0.406 0.715 0.927 0.071 0.132 

F1 0.958 0.801 0.623 0.559 0.589 

Hybrid model 

Non-optimised Model - 0.813 0.886 0.606 0.800 0.690 

Optimised Model 
Recall 0.809 0.886 0.653 0.768 0.692 

F1 0.814 0.889 0.645 0.774 0.704 

Optimised Cost-sensitive 
Model 

Recall 0.510 0.723 0.912 0.12 0.152 

F1 0.815 0.889 0.696 0.751 0.722 

Table 10 Metrics for the different optimised ML classification models for the Static mode. 
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The main conclusions about these results are: 

- The optimisation process improved the initial metrics, although these improvements were 
reduced up to 5%. This implies that identifying the correct model is crucial because the 
subsequent optimisation process does not improve its metrics.  

- The implementation of cost-sensitive techniques could achieve this 5% improvement. 
Otherwise, the gains are reduced up to 2%. Then, the application of cost-sensitive techniques 
is meaningful for unbalanced databases.  

- Improving the recall implies diminishing the precision of the model. The best-overall metrics 
were obtained to optimise the F1 metric, one metric that leverages recall and precision. 

- Best values were obtained for the reference model as was expected. These values represent 
the theoretical values that could be expected if the database would be completely balanced. 
These are theoretical values that represent the threshold to compare the performances of the 
other experiments. The references metrics vary from 90 to 95% for the different metrics and 
should be used as reference values.  

- The pure and Hybrid model provide worse values than the reference model. The Hybrid model 
offers better metrics than the Pure model. The Pure model's current metrics do not 
recommend its implementation because the missed-alert rate is 62%, and the false-alert rate 
is 56%. Both the Hybrid model rates are 70% and 75%, which means an improvement of about 
20%. 

The last step is the model finalisation, i.e., to train the model considering the training and the validation 
set and evaluate the metrics with the test set. It has been selected previous better models for Pure 
and Hybrid models. Table 11 shows the results obtained: 

Experiment Accuracy AUC Recall Precision F1 

Pure model 0.961 0.814 0.651 0.587 0.617 

Hybrid model 0.823 0.798 0.715 0.760 0.736 

Table 11 Results of the finalised models for the Static mode. 

These results provide the behaviour of the finalised model that can be expected after their 
deployment. The introduction of the validation set together with the training set means an 
improvement on the metrics over 2%. However, it is not presented in the above tables. For each one 
of the predictions, it is obtained the probability of the SI prediction. Therefore, it is concluded that the 
Hybrid model should be the one selected for the Static mode with rates close to 75% for missed and 
false alerts and 82% of overall accuracy. 

 

6.1.2 ML results for regression 

ML regression techniques perform numerical predictions about the safety metrics: MinDis, 
DistoMinDis and TimetoMinDis. The strong imbalance of the database mainly affects the classification 
problem, and there are no specific techniques to handle them in regression problems. Herein, the 
stratification problems for regression problem had considered the equal distribution of SI samples into 
the training, validation and testing sets.  
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The first step was to analyse different ML algorithms' performance, aiming to identify the best one. 
Two primary metrics are MAE and RMSE, although RMSE was identified as the optimisation metric. 
RMSE is the most typical metric used in regression problems because it represents better the impact 
of large-distanced predictions. The three same experiments for classification techniques were 
performed. The three experiments agreed that ensemble models provided the best results. For each 
experiment, the three top ML models varied between Extra trees, Random Forest, Catboost and 
Extreme Gradient. Extra Trees provided the best results for the three models. The models were 
evaluated based on stratified CV techniques to avoid overfitting on the results. The values obtained 
with the training set were compared with the validation set, which provided similar results.  

The second step was to perform the feature selection. The three experiments provided similar results 
because the initial separation and initial azimuth were the most influential variables. GS variation and 
track variation encompassed together almost 50% of the influence. However, the impact of the 
variable changes for the different models. The pure model provided 25% of the initial separation effect, 
and the Hybrid model reduced their importance up to 15%. 

On the other hand, the least influential features were the wake-turbulence type and vertical rate 
variables. Upon further removing the least influential variables, results confirmed that models with 
minor features provided worse values. The performance metrics diminished their value by about 1%. 
This implied that removing the least influential features on the model was feasible and could reduce 
computational cost.  

The next step was the optimisation process of the ML algorithm. The goal of this process was to 
optimise the regression metric RMSE. Table 12 shows the results of the finalised models.   

Safety metric Experiment RMSE MAE R2 RMSLE 

MinDis 

Reference model 7.602 4.881 0.917 0.483 

Pure model 6.542 3.808 0.936 0.293 

Hybrid model 3.340 2.337 0.6 0.392 

DistoMinDis 

Reference model 14.613 8.977 0.726 0.720 

Pure model 12.184 7.101 0.837 0.601 

Hybrid model 13.813 7.010 0.808 0.607 

TimetoMinDis 

Reference model 120.754 64.382 0.748 0.895 

Pure model 99.272 49.392 0.835 0.862 

Hybrid model 121.299 60.778 0.778 0.895 

Table 12 Metrics for the finalised ML regression models for the Static mode. 

These results provided the behaviour of the finalised model that can be expected after their 
deployment. The main conclusions about these results are: 
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- The optimisation process improved the initial metrics, although these improvements were 
reduced up to 0.5%. This implies that identifying the correct model is crucial because the 
subsequent optimisation process does not improve its metrics.  

- To improve the RMSE implied to diminish the MAE of the model barely.  
- The reference model provided the worst results. One reason was regression algorithms do not 

need balanced datasets to obtain the best behaviour.  
- The hybrid model provided the best results for MinDis (3.6 NM) and Pure model for 

DistoMinDis (12 NM) and TimetoMinDis (99 sec). The improvements of the variables with the 
corresponding model were for MinDis (50% compared with Pure Model), DistoMinDis (15% 
compared with Pure Model) and TimetoMinDis (18% compared with Pure Model).  

Therefore, it is clear which model should be selected for each safety metric, but it isn't easy to know 
how to integrate different experiments in the same system.  

 

6.1.3 Analysis of results for the Static mode 

The ML classification algorithms were applied to predict whether aircraft pairs constitute SI or not (and 
the probability of this prediction), and ML regression algorithms to predict the safety metrics MinDis, 
DistoMinDis and TimetoMinDis. The best algorithms for both problems were the ensemble methods. 
Notably, Random Forest and Extra Trees provided the best results in the majority of experiments.  

Feature importance identified that wake-turbulence type and vertical rate variables should be 
discarded because their influence was almost null. The decrease was very low by removing them to 
the ML model, although computational time's impact went unnoticed. The hyperparameter 
optimisation process improved the ML models' results, although the improvements were reduced by 
2%. Particularly for classification problems, it was most important to apply cost-sensitive techniques 
to handle the strong imbalance than the hyperparameter optimisation. The hyperparameter 
optimisation's computational time was very high, from one to three days in the worst experiments.  

Three experiments were carried out. The reference model provided the hypothetical best results for 
classification algorithms, although it did not behave in such a way for regression algorithms. The hybrid 
model provided the best classification metrics (around 75% recall and F1) and MinDis (3.3 NM RMSE) 
for the regression algorithm. The pure model provided the best values for DistoMinDis (12.2 NM RMSE) 
and TimetoMinDis (100 seconds RMSE); the Hybrid model provides larger values (around 1.5 NM and 
20 seconds more). Therefore, it can be concluded that the best model to implement was the Hybrid 
model. However, it demanded operational filtering for the aircraft pairs expected to cross with a 
separation lower than 20 NM and 1000 ft. 
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Figure 27 Example of predictions of the Hybrid model for the Static Mode  

Figure 27 shows an example of the ML predictions. It provides the aircraft pair considered and the 
safety metrics. It has been added a value NaN to the aircraft pairs did not consider in the Hybrid model, 
i.e., the aircraft pair is not expected to cross with separation lower than 20 NM and 1000 ft.  

 

6.2 ML predictor for the Dynamic Mode 

This section provides the Dynamic mode results, and the process is similar to the Static mode. This 
mode is characterised because it gives SI prediction throughout the aircraft's evolution within the 
airspace and needs 4DT predictions as input. As explained in section 5.4, three experiments were 
carried out. The Static database's main difference is the number of samples that constitutes the 
database; it is ten times greater. Besides, the SI percentage of the database increases by 18%. It is 
noteworthy that the Hybrid model has more SI samples than no SI. Table 13 shows the number of 
samples for each experiment; in parenthesis, the rate of SI/no SI samples appear. 

 Training set Validation set Test set 

Reference model (50/50) 1556916 667250 247130 

Pure model (18/82) 4254567 1823387 675329 

Hybrid model (68/32) 1140470 488773 181027 

Table 13 Number of samples of each experiment for the Dynamic mode. 

Conversely, the Dynamic database's main problem was the calculation time required for training the 
ML algorithm. The training process of regression algorithms needed to halve the database. Appendix 
C details the process to obtain the results of the Pure model for regression algorithms. 
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6.2.1 ML results for classification 

ML classification techniques perform prediction whether an aircraft pair is SI or not, and the probability 
of this prediction. The Dynamic database presents a high imbalance but no so sharped as the Static 
mode. 

The first step was to analyse different ML algorithms' performance, aiming to identify the best one. 
The results were similar to the Static mode because the three experiments agreed that ensemble 
models provided the best results. For each experiment, the three top ML models varied between 
Random Forest, Extra trees, Decision Tree and Catboost. Nonetheless, the random forest provided the 
best results for the three experiments. The models were evaluated based on stratified CV techniques 
to avoid overfitting on the results. The values obtained with the training set were compared with the 
validation set, which provided similar results.  

The feature selection results were completely different from the Static mode. The three experiments 
concluded the most influential features were the target prediction (MinDis_re and SI_re) which 
encompassed around 70% for each model influence. Other safety metrics predictions barely presented 
an effect on the model. The rest of the features provided a similar influence impact of about 2%. Based 
on the Static results, wake-turbulence type was not considered a feature in the Dynamic database. 
Therefore, no features were removed from the database.   

The next step was the optimisation process of the ML algorithm. Based on the Static results, it only 
was an optimised F1 metric. The optimisation process was performed applying cost-sensitive 
techniques to the Pure and Hybrid model. Table 14 shows the different optimised models' results on 
the training set by using a 5-fold CV.   

Experiment Model Optimizer Accuracy AUC Recall Precision F1 

Reference 
model 

Non-optimised Model - 0.984 0.999 0.991 0.986 0.988 

Optimised Model F1 0.985 0.999 0.993 0.984 0.989 

Pure model 

Non-optimised Model - 0.987 0.999 0.954 0.971 0.962 

Optimised Model F1 0.986 0.999 0.955 0.968 0.963 

Optimised Cost-sensitive 
Model 

F1 0.986 0.999 0.956 0.968 0.963 

Hybrid model 

Base Model - 0.984 0.998 0.984 0.989 0.985 

Optimised Model F1 0.981 0.998 0.985 0.987 0.986 

Optimised Cost-sensitive 
Model 

F1 0.980 0.998 0.989 0.982 0.986 

Table 14 Metrics for the different optimised ML classification models for the Dynamic mode. 

The main conclusions about these results are: 

- The results of the Dynamic mode were better than the Reference model of the Static mode. It 
implies that the introduction of the 4DT prediction was crucial to improving the SI predictions. 
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- The optimisation process barely improved the initial metrics because their values were very 
high; these improvements were reduced to 1%. This implies that identifying the correct model 
was crucial because the subsequent optimisation process did not improve the metrics.  

- Cost-sensitive techniques provided minimal improvements compared with the Static mode. 
The best hyperparameters identified were similar to balanced ones.  

- Best values were obtained for the reference model as was expected. These values represented 
the theoretical values that could be expected if the database would be completely balanced. 
These were theoretical values and represented the threshold to compare the performances of 
the other experiments. The references metrics were over 99% for the different metrics and 
should be used as reference values.  

- The pure and Hybrid model provide slightly worse values than the reference model. The Hybrid 
model provided better metrics than the Pure model, but the difference is lower than 2%. Both 
models could be implemented because their values were quite similar, above 95% Pure model 
and 98% Hybrid model.  

The last step was the model finalisation, i.e., to train the model considering the training and the 
validation set and evaluate the metrics with the testing set. It was selected previous better models for 
Pure and Hybrid models. Table 15 shows the results obtained: 

Experiment Accuracy AUC Recall Precision F1 

Predictions 0.966 0.941 0.902 0.909 0.906 

Pure model  0.990 0.999 0.987 0.989 0.988 

Hybrid model  0.991 0.999 0.990 0.991 0.990 

Table 15 Results of the finalised models for the Dynamic mode. 

The metrics of both models were too high; their rates were almost 99% for every metric. However, it 
was required to compare these results with the 4DT predictions, i.e., to reach the improvement 
obtained by introducing ML techniques. The results confirmed that the introduction of ML techniques 
improved the predictions provided to the database. The predictions provided to the database guessed 
90% of the SI, while the Hybrid or Pure model with 4DT predictions improved their metrics until 99%. 
This conclusion is crucial because ML techniques enhance the value of initial 4DT predictions; the ML 
model learns from the initial 4DT predictions and improves them. Although it is not presented in the 
above tables, the probability of the SI prediction for each of the predictions was obtained. Therefore, 
it was concluded that both the Hybrid and Pure model could be implemented because they provided 
results of around 99%. 

 

6.2.2 ML results for regression 

The first step was to analyse different ML algorithms' performance, aiming to identify the best one. 
RMSE was identified as the optimisation metric. The three same experiments for classification 
techniques were performed. The three experiments agreed that ensemble models provided the best 
results. For each experiment, the three top ML models varied between Extra trees, Random Forest, 
Catboost and Extreme Gradient. Extreme Gradient provided the best results for the three models. The 
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models were evaluated based on stratified CV techniques to avoid overfitting on the results. The values 
obtained with the training set were compared with the validation set, which provided similar results.  

The second step was to perform the feature selection. It was completely different from the Static mode 
because the ML models received their importance from each target's prediction. The influence of each 
target prediction represented over 90% of the prediction. This implies that the rest of the features 
barely affected the model. However, these minor influences meant improvements in the ML models. 
Upon further removing all variables except the target prediction, results confirmed that models 
worsened their metrics by over 3%. Therefore, the features were not removed.  

The following steps were the optimisation of the regression models and the finalisation process. Table 
16 shows the results obtained only for the Pure and Hybrid model for the sake of clarity. In addition, it 
has been introduced the metrics of the 4DT predictions used in the database. 

Safety metric Experiment RMSE MAE R2 RMSLE MAPE 

MinDis 

Predictions 3.845 2.277 0.986 0.063 0.645 

Pure model with predictions 2.579 1.601 0.994 0.178 0.238 

Hybrid model with predictions 1.473 0.992 0.934 0.235 0.563 

DistoMinDis 

Predictions 5.771 2.684 0.954 0.109 0.413 

Pure model with predictions 3.696 1.944 0.973 0.244 0.280 

Hybrid model with predictions 5.331 2.401 0.956 0.290 0.348 

TimetoMinDis 

Predictions 38.320 21.553 0.955 0.279 0.307 

Pure model with predictions 32.631 16.984 0.967 0.367 0.293 

Hybrid model with predictions 37.469 7.376 0.965 0.371 0.294 

Table 16 Metrics for the finalised ML regression models for the Dynamic mode. 

The main conclusions about these results are: 

- The optimisation process improved the initial metrics by up to 10% in some experiments. This 
implies that the Extreme Gradient model behaviour greatly depended on the optimisation 
process.  

- The dynamic mode provided better results than Static mode. The reductions in all safety 
metrics were close to 60%. 

- The hybrid model provided the best results for MinDis (1.5 NM) and Pure model for 
DistoMinDis (3.7 NM) and TimetoMinDis (32.6 sec). The improvements of the variables with 
the corresponding model were for MinDis (40% compared with Pure Model), DistoMinDis (30% 
compared with Pure Model) and TimetoMinDis (21% compared with Pure Model).   The 
reference model provided the worst results for MinDis, but the Hybrid model provided the 
worst outcomes for DistoMinDis and TimetoMinDis. 

- The introduction of the validation set together with the training set meant an improvement 
on the metrics over 20%. Then, the database volume was a crucial aspect to consider in the 
development of this mode. 
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Similar to classification models, it was required to compare these values with the ML model 
predictions. Pure and Hybrid model improved RMSE values of 4DT predictions, which means ML 
models can improve the initial 4DT predictions. However, these improvements were different for the 
Pure and Hybrid model. The hybrid model improved 60% RMSE values for MinDis while the Pure model 
32%.  The hybrid model barely improved DistoMinDis and TimetoMinDis by about 8% and 3%. 
Conversely, the Pure model improved its values by 35% and 15%. The more considerable benefits could 
be obtained with the Hybrid model for MinDis. 

The above conclusions were similar to the regression models of Static mode. Therefore, it was clear 
which model should be selected for each one of the safety metrics. However, it isn't easy to know how 
to integrate different ML models in the same system.  

 

6.2.3 Analysis of results for the Dynamic mode 

The best algorithms for classification and regression problems were ensemble methods. Notably, 
Random Forest for classification and Extreme Gradient for regression provided the best results in the 
experiments. The Dynamic mode's main problem was the large dataset used to train the models that 
demanded substantial computational time and computer resources.  

Feature importance was different from the Static mode because the predicted variables of 4DT were 
the most influential (above 90%). The rest of the variables provided a meagre influence; however, they 
had not been discarded based on operational knowledge. The hyperparameter optimisation process 
improved the results of the ML models. In Classification, the improvements were reduced, but the 
Extreme Gradient model improved the values up to 20%. Cost-sensitive techniques were applied, 
although the benefits were reduced compared with the Static mode.  

The Dynamic mode remarkably increased the performances of both classification and regression 
models. Pure and Hybrid models provided almost 99% of reliability in classification models. They 
improved their values from 90% of the 4DT predictions supplied to the database. However, the 
improvements achieved by regression models varied depending on the model and the target. The 
hybrid model provided the best values for MinDis. It improved the RMSE value of the predictions 
provided to the database from 3.8 to 1.5 NM. However, the benefits of the Hybrid model were reduced 
for DistoMinDis and TimetoMinDis. The best values of both safety metrics were obtained for the Pure 
Model. They reduced the RMSE value of the predictions provided to the database from 5.8 to 3.7 NM 
and 38 to 32 seconds. 

Therefore, the Dynamic model's classification results seemed excellent, although the goal must be to 
reach a 0% error rate. Regression results improved the values for the Static mode. However, they 
required more research to enhance their errors, particularly for DistoMinDis and TimetoMinDis.  
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Figure 28 Example of predictions of the Hybrid model for the Dynamic Mode  

Figure 27 shows an example of the ML predictions. It provides the aircraft pair considered and the 
safety metrics. It has been added a value NaN to the aircraft pairs did not consider in the Hybrid model, 
i.e., the aircraft pair is not expected to cross with separation lower than 20 NM and 1000 ft.  
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7 Conclusions 
This deliverable describes task 3.2 about the application of ML techniques for conflict detection. This 
work deals with monitoring tasks focusing on situational awareness. With this aim, this work uses the 
concept of Situation of Interest (SI). One SI is when an aircraft pair is expected to intersect with a 
horizontal separation lower than a pre-defined separation and infringe the vertical separation minima. 
Herein, one SI is an aircraft pair expected to cross with a separation lower than 10 NM and 1000 ft. 
Nonetheless, this value can be specified by ANSP in future work. 

To tackle this problem, it has been developed two approaches with similar roles of the ATCO team. 
The Static mode focuses on planner ATCO. This mode predicts SI and their safety metrics when an 
aircraft pierces into the airspace with the aircraft located within the airspace. This prediction is 
performed once, and it is not updated. It does not receive the 4DT prediction of the different aircraft 
as input. The Dynamic mode focuses on tactical ATCO. This mode predicts SI and their safety metrics 
throughout the evolution of the aircraft within the airspace. The predictions can be performed 
dynamically and not once as the Static mode. Another difference is the Dynamic mode receives the 
4DT prediction of the aircraft within the airspace, and the aircraft will pierce the airspace in the same 
time period. The Dynamic mode considers the prediction of SI, and safety metrics evolve with the 
trajectory evolution.  

The work has been developed considering ADS-B data only. ADS-B trajectories have been extracted 
from The OpenSky Network and constituted the basis for the ML database. This database of ADS-B 
trajectories has also been used as 4DT predictions for the Dynamic mode. The Dynamic mode selected 
the most similar trajectory stored in the database, using it as 4DT prediction in the ML model's input 
data. LSAZM567 airspace in Switzerland is the case study of this work. However, this methodology is 
generalizable and could be applied to different airspaces.  

Current ADS-B trajectories do not provide SI or conflicts. Hence, it has been necessary to build a 
database with SI samples. The main problem to build a database with enough SI was to modify the 
trajectories flown to force situations in which an SI would have emerged. The trajectories have been 
temporarily modified to pierce the airspace within the same time period. The way to generate aircraft 
pairs and new entry times is different for the Static and Dynamic modes. Lastly, the evolution of each 
aircraft pair's trajectories is evaluated to calculate the safety metrics; in turn, the safety metrics are 
labelled for each database sample. 

Both modes apply classification and regression algorithms. Classification algorithms perform 
predictions about whether an aircraft pair is an SI or not, which is the probability of this prediction. 
Regression algorithms perform numerical predictions for the safety metrics: minimum distance to 
reach between an aircraft pair, the distance and the time to reach this point. Then, there are five 
outputs calculated from independent ML predictors. Three experiments have been carried out to 
tackle the strong imbalance of the database regarding SI samples (5% in the Static and 18% in the 
Dynamic mode). The Reference model provides the theoretical best result (balancing SI and no SI 
samples) in classification problems. The Pure model considers the whole dataset. The Hybrid model 
performs an operational filter to focus on aircraft pairs that approach a distance lower than 20 NM 
and 1000 ft. 

The Static mode presents lower accuracy because it can predict the safety metrics when an aircraft 
pierces into the airspace with other aircraft within the airspace (without 4DT predictions). The 
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hypothetical operational limit is around 95%, with which should be compared the different ML models. 
The best classification metrics were obtained for the Hybrid model (75%) and the MinDis safety metric 
(RMSE of 3.6 NM). DistoMinDis and TimetoMinDis metrics achieved their best values with the Pure 
model. Their values were 12 NM and 92 seconds, which did not represent high rates for conflict 
prediction issues. 

The Dynamic mode remarkably increased the performances of both classification and regression 
models of the Static mode. The classification algorithms provided almost 99% of reliability, while the 
4DT predictions provided as inputs were 90%. Although the Hybrid model was better, the difference 
with the Pure model could be negligible. The Hybrid model also offered the best values for MinDis 
safety-metric; it improved the RMSE value of 4DT predictions from 3.8 to 1.5 NM. However, the other 
safety metrics barely improved their values with the Hybrid model. The pure model provided the best 
values for DistoMinDis from 5.8 to 3.7 NM and for TimetoMinDis from 38 to 32 seconds.  

Therefore, this work confirmed that ML techniques could be applied for conflict detection purposes. 
They can be used in isolation of 4DT predictions or with them. ML techniques improved the prediction 
ability from the 4DT predictions considered as data input. This conclusion is significant because it 
means that ML techniques improve initial 4DT predictions, i.e., the ML model learns from the initial 
prediction and improves them. 

It has been identified several problems throughout this work. The most significant was the substantial 
computational cost regarding time and workload. The performance of simulations demanded more 
than 1450 hours. Similarly, the ML training and optimisation process required from one to three days 
for each experiment. It was clear that the process should be improved by reducing computational time 
in further work. Conversely, the increase of the database can improve the metrics of the ML predictor. 
The cost is to increase computational training time. The first results confirmed that the metrics score 
increase was not proportional to the number of samples.  

Moreover, several research lines should be considered in further work. Once it has been proved the 
validity for conflict detection, classification techniques should be applied to conflicts. The 
improvements of the Dynamic mode are evaluated against ADS-B trajectories customized to be used 
as 4DT predictions. Then, it should be considered the introduction of real 4DT predictions by 
implementing ML techniques in a real system. This work evaluated different ML models and should 
step forward by considering Deep Learning or neural networks techniques. 
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Appendix A ADS-B data 

A.1 ADS-B inputs 
ADS-B is a surveillance technology in which an aircraft calculates its position via satellite navigation 
based on the GNSS system [61]. It broadcasts the position and other operational information of the 
aircraft every updating period. The information on the aircraft's status is defined as state vectors and 
contains most tracking information. Table 17 shows the main variables provided by ADS-B data. In this 
way, the state vectors provide tracking information for each point of the trajectory. 

ADS-B variables Type Description 

0 icao24 string 
Unique ICAO 24-bit address of the transponder in hex string 

representation. 

1 callsign string 
Callsign of the vehicle (8 chars). It can be null if no callsign has 

been received. 

2 origin_country string Country name inferred from the ICAO 24-bit address. 

3 time_position int 
Unix timestamp (seconds) for the last position update. It could 
be null if OpenSky received no position report within the past 

15s. 

4 last_contact int 
Unix timestamp (seconds) for the last update in general. This 
field is updated for any new, valid message received from the 

transponder. 

5 longitude float WGS-84 longitude in decimal degrees. 

6 latitude float WGS-84 latitude in decimal degrees. 

7 baro_altitude float Barometric altitude in meters. 

8 on_ground boolean 
A boolean value indicates if the position was retrieved from a 

surface position report. 

9 velocity float Velocity over the ground in m/s. 

10 true_track float True track in decimal degrees clockwise from north (north=0°). 

11 vertical_rate float 
The vertical rate in m/s. A positive value indicates that the 

aeroplane is climbing; a negative value indicates that it 
descends. 

12 sensors int[] 
IDs of the receivers which contributed to this state vector. It is 

null if no filtering for the sensor was used in the request. 

13 geo_altitude float Geometric altitude in meters. 

14 squawk string The transponder code aka Squawk. 
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15 spi boolean Whether flight status indicates a special purpose indicator. 

16 position_source int Origin of this state’s position: 0 = ADS-B, 1 = ASTERIX, 2 = MLAT 

Table 17 Description of ADS-B variables [53]. 

Apart from the variables provided by the ADS-B data, it is necessary to provide new variables or 
features regarding the intrinsic conditions of each aircraft pair. The relative features provide 
information about different variables' characteristics compared between an aircraft pair in one specific 
timestamp. Table 18 shows the relative features considered in this work.  

Relative features type Description 

Horizontal separation float The horizontal separation between an aircraft pair 

Heading float Heading between an aircraft pair 

GS variation float GS variation between an aircraft pair 

Track variation float Track variation between an aircraft pair 

Altitude variation float The altitude difference between an aircraft pair 

Vertical-rate variation float The vertical-rate variation between an aircraft pair 

Table 18 Description of relative features. 

Together, all of these variables provide additional information to ADS-B data that could be crucial to 
adjusting and improving ML techniques. These variables are proposed based on ADS-B data. If there 
were other types of trajectory data, it would be necessary to adapt the available information variables. 
Besides, if there is more information available, it could be easily added as a feature input (e.g., wind 
information, temperature, aircraft weight, etc.). 
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A.2 Output Labels 
The results expected by applying ML techniques are the output labels. Output labels refer to the 
information about SI and safety metrics for each aircraft pair. Table 19 defines the output labels 
considered herein. 

Labels type Description 

SI Boolean A binary variable that could acquire the values 1 (SI) or 0 (No SI). 
This variable gets value 1 when a SI is identified for one aircraft 

pair. Otherwise, the samples are labelled as 0. 

SI probability float A numerical variable that provides information about the 
prediction probability. This variable is calculated based on ML 

algorithms and represents a confidence value of the prediction. 

Minimum distance float A numerical variable that provides information about the 
minimum separation calculated for each aircraft pair. 

Distance to reach 
the minimum 

distance 

float A numerical variable that provides information about the 
distance to reach the minimum separation calculated for each 

aircraft pair. 

Time to reach the 
minimum distance 

float A numerical variable that provides information about the time to 
reach the minimum separation calculated for each aircraft pair. 

Table 19 Description of output labels. 

A.3 Labels as features in the Dynamic mode 
The Dynamic mode performs the SI prediction with information about the aircraft's current state 
vector plus 4DT prediction. This work assumes that some kind of 4DT prediction is available by the 
system in order to provide information about the safety metrics expected (minimum separation, 
distance and time to reach minimum separation). Therefore, it is required to get information about 
the aircraft's current situation (ADS-B data) and 4DT prediction in the airspace considered (ground or 
air source).  

When a 4DT prediction of both aircraft trajectories is available, the predicted safety metrics can be 
calculated and provided that information to the ML. In this way, the ML prediction can improve the 
prediction based on historical data. Besides, the use of 4DT predictions as inputs for ML will confirm 
whether this information could improve the predictions or not. There are no available 4DT predictions 
about the trajectory that will fly the aircraft in the LSAZM567 airspace in this work. Therefore, this 
work will select one ADS-B trajectory available in the database to be employed as the 4DT, as explained 
in section 2.4.2. 
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Appendix B ML experiment for Static mode 
This appendix shows the process performed to train the Pure model for the classification of the Static 
mode. The pure model uses the whole database and presents a strong imbalance between SI and no 
SI (5/95). Figure 29 shows the results of the stratification process in the three sets. 

 

Figure 29 Distribution of SIs by sets of Pure model for the Static mode.  

PyCaret allows performing a first comparison of the ML models. Table 20 shows the training set results 
by applying a 5-fold CV process, providing the average values. The main results for classification 
algorithms are: 

- All algorithms provide very high accuracy (>95%), i.e., it guesses with a very high SI rate and 
no SI as a whole. However, this is not the correct metric to evaluate unbalanced datasets. ML 
models with an F1 value equal to 0 provides an accuracy of 95%, which means that all samples 
are classified as no SI.  

- Precision acquires diverse values depending on the algorithms. Ensemble methods provide 
metrics above 80%.  

- The recall relates the classification rate regarding only SI samples and provides the worst 
results. Recall acquires the best results for the Decision Tree with almost 60% when the rest 
of the models do not reach 50%.  

- F1 is a combined metric of recall and precision. Best values are obtained for ensemble 
methods, and only four of them provide values above 50%. 

Therefore, the best values are obtained for ensemble methods: Random forest, Extra trees and 
Decision tree. These results confirm that unbalanced problems get the best results with ensemble 
methods [62]. Although random forest provides the best value for precision and F1, there is a high 
difference in the decision tree's recall. The decision tree provides a more equilibrated value for the 
three metrics (precision, recall and F1) than the random forest. Then, the decision tree has been 
selected as the ML algorithm that can provide the best results.  
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Model Accuracy AUC Recall Precision F1 

Random Forest Classifier 0.970 0.978 0.458 0.867 0.600 

Extra Trees Classifier 0.969 0.973 0.445 0.853 0.585 

Decision Tree Classifier 0.957 0.780 0.577 0.561 0.569 

CatBoost Classifier 0.967 0.973 0.429 0.793 0.557 

K Neighbors Classifier 0.960 0.887 0.408 0.643 0.499 

Extreme Gradient Boosting 0.964 0.968 0.358 0.800 0.495 

Light Gradient Boosting Machine 0.961 0.958 0.258 0.830 0.393 

Gradient Boosting Classifier 0.956 0.911 0.131 0.818 0.226 

Ada Boost Classifier 0.950 0.849 0.065 0.412 0.112 

Naive Bayes 0.924 0.709 0.124 0.215 0.102 

Quadratic Discriminant Analysis 0.897 0.497 0.054 0.025 0.025 

Logistic Regression 0.951 0.686 0.000 0.000 0.000 

SVM - Linear Kernel 0.951 0.000 0.000 0.000 0.000 

Ridge Classifier 0.951 0.000 0.000 0.000 0.000 

Linear Discriminant Analysis 0.951 0.681 0.000 0.000 0.000 

Table 20 Metrics of ML algorithms applied to Pure model for the Static mode. 

Feature selection provides information about the influence of the features on the ML algorithm. Figure 
30 shows the feature importance plot and the Recursive Feature Elimination (RFE) results with CV [60]. 
The variable with larger influence is the initial azimuth, which represents the course that connects both 
aircraft. Initial horizontal and vertical separation and the track are influential variables as well. These 
four features are the most important because they represent almost 50% of the feature importance. 
Conversely, we can identify the features that do not provide a relation with the model. The wake-
turbulence type and the vertical rate variables constitute them. The application of RFE confirms these 
results. RFE evaluates which is the importance of the features to known which one of them do not 
provide an improvement in the model. The optimum number of features is 17 when initially there are 
28. RFE confirms wake-turbulence type and vertical rate variables should not be considered. 
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Figure 30 Left) feature importance and right) RFE function of Pure model for the Static mode. 

Table 21 shows the ML model results without those features, which are pretty similar to all features. 

Model Accuracy AUC Recall Precision F1 

Validation set with all features 0.957 0.780 0.577 0.561 0.569 

Validation set with feature selection 0.958 0.783 0.570 0.585 0.577 

Table 21 Comparison of the model performance with feature selection of Pure Model for the Static mode. 

The next step is to optimise the hyperparameters of the algorithm to optimise the behaviour and avoid 
overfitting. Hyperparameters must be defined in advance of the training process of the model. Besides, 
it has been applied cost-sensitive techniques to tackle the strong imbalance of the dataset. Table 22 
shows the grid search of the hyperparameters for the decision tree classifier. 

Hyperparameter Values 

Class weight [None, 'balanced', {1/5:15}] 

Complexity parameter [0:0.02] 

Maximum depth [None, 3, 5, 10, 20] 

Maximum number features [None, 5,7,10,15] 
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Minimum samples of leaf [2, 10, 20, 50, 100] 

Criterion ['gini', 'entropy'] 

Table 22 Hyperparameters selected for the Grid search of the Pure model for the Static mode. 

It has been optimised the recall and F1; it has also been performed 5-fold CV. Table 23 shows the 
results of the different ML models evaluated during experiment 1.  

Model Optimizer Accuracy AUC Recall Precision F1 Kappa 

Non-optimised Model - 0.958 0.780 0.570 0.585 0.577 0.547 

Optimised Model 
Recall 0.960 0.800 0.561 0.602 0.576 0.558 

F1 0.960 0.801 0.558 0.608 0.580 0.559 

Optimised Cost-sensitive Model 
Recall 0.406 0.715 0.927 0.071 0.132 0.046 

F1 0.958 0.801 0.623 0.559 0.589 0.567 

Table 23 Results of the different models of Pure model for the Static mode. 

The optimisation process improves the results by around 2%, but cost-sensitive techniques achieve a 
better improvement of up to 5%. The cost of enhancing recall is to reduce precision by 7%. To reach 
higher recall metrics, the algorithm prioritises guessing the minority class. Then, it is not an acceptable 
solution. On the other hand, F1 optimisation provides the best results for the ML model. The ML 
improves their values although the improvements are reduced, recall about 5%, F1 1% and precision 
decreases 3%. 
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Appendix C ML experiment for Dynamic mode 

This appendix shows the process performed to train the regression ML model for Dynamic mode. 
Similar to Appendix B, it is shown the Pure model. PyCaret allows a first comparison between the ML 
models available and makes a comparison between their metrics. The performance metrics for the 
training set are performed based on a 5-fold CV. Notice that the values in the tables are the average 
value of the five folds. The results have been sorted concerning the RMSE metric. In this case, as there 
are three independent targets to be analysed (MinDis, DistoMinDis and TimetoMinDis), the best model 
for each one is selected and optimised. For the sake of clarity, it is only detailed in-depth the label 
MinDis. The same process has been repeated for the rest of the variables. Table 24 shows the metrics 
of ML algorithms for this target. 

Model MAE MSE RMSE R2 RMSLE MAPE 

Extreme Gradient Boosting 1.832 8.727 2.954 0.991 0.199 0.285 

Light Gradient Boosting Machine 1.991 10.067 3.173 0.990 0.209 0.350 

Gradient Boosting Regressor 2.179 12.004 3.464 0.988 0.224 0.386 

Linear Regression 2.313 14.160 3.763 0.986 0.254 0.356 

Ridge Regression 2.313 14.160 3.763 0.986 0.254 0.357 

Bayesian Ridge 2.313 14.160 3.763 0.986 0.254 0.357 

Least Angle Regression 2.315 14.179 3.765 0.986 0.255 0.357 

Orthogonal Matching Pursuit 2.293 14.271 3.777 0.986 0.256 0.341 

Huber Regressor 2.263 14.301 3.781 0.986 0.251 0.336 

Decision Tree Regressor 2.024 14.635 3.825 0.986 0.236 0.258 

Lasso Regression 2.506 15.376 3.921 0.985 0.269 0.515 

K Neighbours Regressor 3.975 32.717 5.720 0.968 0.368 0.921 

Passive Aggressive Regressor 4.145 31.476 5.549 0.969 0.382 0.801 

AdaBoost Regressor 7.510 83.060 9.111 0.919 0.637 2.549 

Elastic Net 8.130 104.904 10.242 0.897 0.605 2.154 

Lasso Least Angle Regression 26.181 1022.983 31.984 -0.000 1.082 6.984 

Table 24 Metrics of ML algorithms applied to Pure model for MinDis. 

The models with the best performance are Extreme Gradient Boosting, Light Gradient Boosting and 
Gradient Boosting Regressor. Extra Trees and Random Forest presented errors during the simulations 
that avoided obtaining consistent results and were discarded. The main characteristics obtained are: 
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- All models present an RMSE between 3 and 6 NM and an MAE between 1 and 5 NM. The 
metrics are similar between them, particularly with the ensemble methods varying from only 
0.5 NM. The RMSE value is barely 1 NM higher than the MAE value in most models. 

- The only model with an RMSE below 3 NM is the XGboost (2.9 NM). It confirms previous 
outcomes about ensemble methods that provided the best results. 

- Most ensemble models present an R2 value relatively high, between 0.99 and 0.98. This means 
that the features and the targets are highly correlated, as will be analysed in the feature 
selection.  

Table 25 shows the results obtained for the different safety metrics applied to the validation set. 

Target Model MAE MSE RMSE R2 RMSLE MAPE 

MinDis XGboost 1.836 8.782 2.963 0.991 0.198 0.294 

DistoMinDis XGboost 2.113 16.327 4.041 0.967 0.259 0.313 

TimetoMinDis XGboost 18.681 1126.601 33.564 0.966 0.400 0.326 

Table 25 Results for the validation set of Pure Model for the Dynamic mode. 

Compared with the results obtained for the training set using CV, the validation-set results are very 
similar. This indicates that there is no problem with overfitting with this model. Figure 31 shows the 
distribution of the predicted values of the different targets. 

  
 

Figure 31 Predicted vs Measured values of the left) MinDis, medium) DistoMinDis and right) TimetoMinDis 
for the non-optimised algorithm of the Pure model. 

The three targets improve their values with the same model. The predictions show inefficiencies close 
to 0 values because they provide predictions lower than 0, i.e., the predictions acquire negative value. 
These values should not be accepted during the prediction process. MinDis reduces its RMSE value 
from 6.6 (Static) to 2.9 NM, although the individual error can be up to 20 NM in some cases. 
DistoMinDis reduces its RMSE value from 12.3 (Static) to 4.0 NM, although the individual error can be 
up to 75 NM. TimetoMinDis reduces its RMSE value from 100 (Static) to 33 seconds, although the 
individual error can be up to 600 seconds. The conclusions are clear about the Dynamic mode's 
improvement because they reduce the Static values up to three times. 

The feature selection identifies those features that do not contribute to the model and increase its 
complexity. The feature selection is performed for all targets because they can influence each 
differently to each one. Figure 32 shows the feature influence on MinDis. 
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Figure 32 Feature importance of Pure model for MinDis. 

The prediction of the MinDis is the most significant factor, close to 100%. Then, for this model, it is 
crucial to have a better prediction of the MinDis. The rest of the features barely influence the model. 
It is important to note that the predictions of the other safety metrics are neither significant. For the 
other two safety metrics, the feature influence can be seen in Figure 33. 

  

Figure 33 Feature importance of left) DistoMinDis, and right) TimetoMinDis for the non-optimised algorithm 
of the Pure model. 

For both targets, the feature with more significant influence in the model predicts the same target 
used in the model near 100%. The rest of the variables do not present barely influence in the model. 



CONFLICT DETECTION MODULE   

 

 

87

 

 

It is analysed the model by removing the targets predicted as inputs (both DistoMinDis and 
TimetoMinDis). The model worsens the results from 32 seconds to 81 seconds (more than 100% 
increase). These results confirm the crucial importance of having a prediction of the safety metrics. 

In order to optimise the model, it is necessary to analyse the behaviour of the model, variating the 
hyperparameters. There are three targets to be improved so that the optimisation will be performed 
for each model. A grid search is implemented with a 5-fold CV. The metric selected to be improved the 
RMSE. Table 26 shows the results for the optimised models. 

Target Model Optimizer MAE MSE RMSE R2 RMSLE MAPE 

MinDis 
Baseline  1.832 8.727 2.954 0.991 0.199 0.285 

Optimised RMSE 1.601 6.652 2.579 0.994 0.178 0.238 

DistoMinDis 
Baseline  2.113 16.327 4.041 0.967 0.259 0.313 

Optimised RMSE 1.944 13.661 3.696 0.973 0.244 0.280 

TimetoMinDis 
Baseline  18.681 1126.601 33.564 0.966 0.400 0.326 

Optimised RMSE 16.984 1064.816 32.631 0.967 0.367 0.293 

Table 26 Metrics for the optimised Pure model for the dynamic mode. 

The optimization process provides different improvements on the RMSE values of the different targets: 
13% for MinDis, 7% for DistoMinDis and 2% for TimetoMinDis. These results provide different 
improvements than the Reference and Hybrid model. In conclusion, the Pure model provides the best 
results for DistoMinDis and TimetoMinDis; they have fallen by half. 
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