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Abstract  

The AISA Project-level Concept of Operations set out in Chapter 5 of Deliverable 2.1 has at its center 
the ATC Knowledge Graph (KG). In this deliverable (D 4.1) we describe an architecture for the data 
and metadata in such a KG and for the software components for incrementally processing and 
querying the data and metadata in the KG. The Proof-of-Concept KG System exemplifies this 
architecture and has the purpose of guiding further developments in WP 4 and WP 5. The proposed 
architecture of a KG system facilitates SPARQL Queries Capturing Monitoring Tasks based on 
traffic/airspace data converted to RDF. It further accomodates the integration with other 
components such as the Reasoning Engine in Prolog developed in Task 4.2  and Machine Learning 
Modules developed in WP3. The main goal is to develop and assess the concept of the artificial SA 
based on a KG from a functional perspective rather than to consider requirements of a real-time life 
system. In this deliverable we also describe the UML-to-RDFS/SHACL mapper which facilitates the 
transformation from information exchange models such as AIXM and FIXM modeled in UML to KG 
schemas in RDFS and SHACL.       
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Executive Summary 

This document describes deliverable D4.1 which is specified as a Demonstrator. The actual 
deliverable consists of two parts delivered as GitHub repositories which will be made available open 
source. The first part is the UML-to-RDFS/SHACL mapper (also referred to as AISA XMI mapper). The 
second part is the Proof-of-Concept KG system (also referred to as AISA KG system). 

The UML-to-RDFS/SHACL mapper has already been used intensively in Task 4.3 to generate major 
parts of the KG schema from existing information exchange models. The generated KG schema 
consists of a vocabulary in RDF Schema (RDFS) and a set of structural constraints in the Shapes 
Constraint Language (SHACL). The generated SHACL constraints have been used, in turn, to validate 
the RDF data created manually in Task 4.3. The UML-to-RDFS/SHACL mapper is implemented in 
XQuery, it takes as input an UML class diagram represented in XMI (XML Model Interchange format) 
and a configuration file specifying which parts of the UML class diagram should be mapped, and 
produces as output an RDFS/SHACL document in RDF/XML format. To accommodate specifities of 
different information exchange models (e.g., different sets of UML stereotypes) the mapper comes 
with a plug-in architecture and currently has a FIXM plug-in and an AIXM plug-in.  

Before discussing the proof-of-concept KG system let us recall the core purpose of the ATC 
knowledge graph in the project-level concept of operations, which is to facilitate SPARQL Queries 
Capturing Monitoring Tasks. In principle, for this purpose, it would suffice to transform and load all 
the relevant data into the KG and provide a SPARQL endpoint to pose the queries. This would, 
however, result in a nightmare regarding development and maintenance of the queries (with most 
queries being extremely complex and sharing large common parts) and regarding performance of 
query execution (with every query executed from scratch). Similar challenges exist for traditional 
databases where they are solved by materialized views (making queries and their results reuseable 
for other query executions), and incremental view maintenance (avoiding the need to recalculate 
query results once new data arrives). These  proposed architecture will apply these concepts to KGs. 
From the perspective of Situational Awareness (SA) assessment, the KG will serve as memory of a 
history sensitive self-aware system, and, integrating with ML Modules, as memory of a predictive 
system. From this perspective it is clear that the data and metadata in the KG have to be fully 
versioned, that is, all historical states of the KG have to be queryable or at least reconstructible.  

The Proof-of-Concept KG system demonstrates the KG system architecture described in this 
document. By KG system we refer to (1) the KG (in AISA: an RDF dataset), (2) the application-
independent software components for storing, processing  and querying the KG (in AISA: Apache Jena 
including Fuseki and TDB), (3) a set of application-specific engines (in AISA: a set of Java programs 
making heavy use of SPARQL which are responsible for loading, querying, inserting, processing, 
importing and exporting data and metadata in the KG) and (4) a control component (in AISA: a Java 
program which invokes the different engines and provides a command-line interface to allow users 
to invoke engines and to facilitate the scripting of experiments). Engines are invoked via the central 
control component in a serialized/synchronous manner. Components external to the KG system, like 
ML modules, are loosely coupled via file export and file import and run asynchronously; they are 
integrated into the KG system in a serialized/synchronous manner each by a specific engine which 
takes care, by separate invocations, of (1) the export from the KG of the input data for the external 
module and (2) the import to the KG of the output data from the external module. Rule-based 
reasoning in Prolog (to be discussed in D 4.2)  will be integrated seamlessly into the system by 
Prolog-based engines, i.e., Java programs that call SWI-Prolog via  the Java/Prolog interface JPL.         
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Intended Audience 

This document is intended for use by those employed within SESAR Joint Undertaking and by the 
experts from the ATM community, other professionals working on research and development in the 
fields of data and knowledge engineering and information management, those employed in 
EUROCONTROL and the ANSPs who might take advantage of the proposed methods. The 
components described in this document should act as central components of the AI Situational 
Awareness System developed in the project and act as technical basis for further developments at a 
later stage of the AISA project. In particular, this document will be useful to partners involved in the 
project as a basis for further development in WP4 and WP5.  
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1 Introduction 

In Task 4.1 we have developed (1) the UML-to-RDFS/SHACL mapper and (2) a KG system architecture 
and proof-of-concept prototype KG system geared towards the AISA project-level Concept of 
Operations. This document describes these developments.   

1.1 Definitions 

In the technical scope of this deliverable we give very specific technical meaning to otherwise broad 
terms.   

Knowledge Graph (KG). A knowledge graph is a persistent RDF dataset, that is, a set of named RDF 
graphs comprising data and metadata.   

KG System. By KG system we refer to (1) the KG, (2) the application-independent software 
components for storing, processing  and querying the KG, (3) a set of application-specific engines 
which are responsible for loading, querying, inserting, processing, importing and exporting data and 
metadata in the KG and (4) a control component which invokes the different engines.  

The complete list of acronyms and definitions of the terms mentioned in this paper can be found at 
the end of the document in the Appendix A – Glossary. 

1.2 Purpose of the document 

The purpose of this document is to describe the work undertaken in Task 4.1 to develop building 
blocks for the implementation of a system that serves to assess the concept of AI situational 
awareness. The current version sets the way for the forthcoming developments of WP 4 as well as 
Task 5.1 in the AISA project. The KG system architecture proposed and the software described in this 
document may evolve together with evolving requirements in the remainder of WP4 and Task 5.1.  

1.3 Structure and methodology 

This document describes the software developed in Task 4.1 (UML to RDFS/SHACL Mapper and 
Proof-of-Concept KG system ). Section 2 describes the UML-to-RDFS/SHACL mapper and how it is 
applied. Section 3 proposes a KG system architecture for SA systems, describes a small Proof-of-
Concept KG system together with a compact Java library, i.e., set of (abstract) classes and interfaces, 
facilitating the development of a KG system following the proposed architecture.  

Appendices at the end of this document contain a glossary of all terms and acronyms. 
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1.4 Relations to other documents 

The document is linked to project deliverable: 

• AISA D2.1: Concept of Operations for AI Situational Awareness 

• AISA D2.2: Requirements for Automation of Monitoring Tasks via AI SA 
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2 UML to RDFS/SHACL Mapper 

2.1 Introduction 

The UML to RDFS/SHACL Mapper (alternatively referred to as AISA-XMI-Mapper) maps selected 
classes of UML class diagrams to RDF Schema (RDFS) and Shape Constraint Language (SHACL) 
documents. RDFS defines the vocabulary of the domain which is described by the UML class 
diagrams, i.e. classes and class hierarchies. SHACL defines structural constraints of the domain. The 
mapper is created with the aim of mapping aeronautical UML models (AIXM 5.1.1., FIXM 3.0.1. 
SESAR) which adhere to a specific modelling style. Therefore, models provided to the mapper must 
fulfill certain semantic and syntactic requirements. 

2.1.1 Semantic Requirements 

The semantic requirements capture the modeling style followed by the aeronautical UML models. 
Other UML models mapped must also adhere to these.  

• Requirement 1: Class names must be unique within a model (AIXM, FIXM, ...). There can be a 
UML class called "Route" in an AIXM based model and an FIXM based model but there must 
not be two different UML classes called "Route" in one model even if they are in different 
packages. 

• Requirement 2: Models contain only directed associations. 

• Requirement 3: Role names (at the target) of associations with the same source class must 
be unique within the source class. 

• Requirement 4: Role names must exist, if there is more than one association between a 
source and a target class. If there is only one association and no role name provided, the role 
name is constructed using the name of the target class. 

Requirement 1 is validated by the mapper and, if violated, throws an error. Requirements 2-4 are 
assumed to be UML model requirements and are not validated by the mapper. 

2.1.2 Syntactic Requirements 

• Models to-be mapped must be exported to a single XMI file (version 2.1) by the Enterprise 
Architect (version 14.1). 

2.1.3 Architecture 

The architecture of the mapper is shown in the figure below. A configuration file refers to XMI files 
and keeps lists of selected UML classes. A single configuration file is provided as input to the mapper. 
Based on the configuration file, selected subsets of models are extracted by the extractor module. 
Extracted subsets of models are mapped by model-specific plugins to RDFS/SHACL documents 
provided as RDF/XML files.  
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Figure 1 Architecture of the UML to RDFS/SHACL Mapper 

2.1.4 How-to: Running the Mapper 

There are different ways to run the mapper. Among them the following two ways have been applied 
in the project so far: 

• Approach 1: Install a W3C compliant XQuery processor (e.g. BaseX) and run the file 
mapper.xq:  

o Using the BaseX command line tool:  
basex -b$config="<locationOfTheConfigurationFile.xml>" mapper.xq 
 

o Or using the BaseX GUI and manually binding the location of the configuration file to 
the config variable. 

• Approach 2: Write a Java program which runs mapper.xq. This approach is demonstrated by 
RunMapper.java and has been applied in Task 4.3. 

2.1.5 How-to: Transforming generated RDFS/SHACL documents to Turtle 
format 

The generated RDFS/SHACL documents are in RDF/XML format which makes them rather difficult to 
read for humans. The Turtle RDF syntax is much easier to read and it is easy to transform from 
RDF/XML to Turtle. One approach is to use functionality from Apache Jena to do this transformation 
from Java. This approach is demonstrated in TransformXML2TTL.java and has been applied in Task 
4.3.  

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/_sampleJavaProgram/SampleProgram/src/main/java/at/jku/dke/samples/RunMapper.java
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/_sampleJavaProgram/SampleProgram/src/main/java/at/jku/dke/samples/TransformXML2TTL.java


 

PROOF-OF-CONCEPT  
KG SYSTEM 

 

 

  

 

14 
 

2.1.6 How-to: Validating data graphs 

There are a different ways to validate data with generated RDFS/SHACL documents. One approach is 
to invoke functionality provided by Apache Jena for RDFS reasoning and SHACL validation from Java. 
This approach is demonstrated in ValidationWithSHACL.java . 

When validating RDF data against generated SHACL documents one needs to be careful to make sure 
that in the data the same namespaces are used as in the generated RDFS/SHACL document. One 
needs to be aware that the generated RDFS/SHACL schemas use namespace http://www.aisa-
project.eu/vocabulary/aixm_5-1-1# for AIXM, http://www.aisa-project.eu/vocabulary/fixm_3-0-
1_sesar# for FIXM, and http://www.aisa-project.eu/xquery/plain# for plain models. 

2.1.7 Performance 

Performance of the AISA XMI Mapper is not important in AISA because the schemas are typically only 
mapped once in the beginning. Hence, the XQuery code was not written to optimize performance. 
We have nonetheless conducted some preliminary performance studies to get a feeling for the 
mapper's performance characteristics. The performance studies have been conducted with a Lenovo 
Thinkpad T470p using the provided configuration files (see https://github.com/jku-win-dke/AISA-
XMI-Mapper/blob/main/configurations/) and running mapper.xq with the BaseX GUI. 

Execution AIXM_DONLON.xml AIXM_COCESNA.xml FIXM_EDDF-VHHH.xml 

 1 32 821 ms 102 323 ms 12 555 ms 

 2 34 069 ms 102 758 ms 12 336 ms 

 3 33 137 ms 103 382 ms 12 524 ms 

 4 33 875 ms 103 906 ms 12 333 ms 

 5 34 443 ms 104 194 ms 12 335 ms 

Average 33 669ms 103 313 ms 12 417 ms 

Table 1 Results of Preliminary Performance Studies for the AISA XMI Mapper 

2.2 Configuration File 

2.2.1 Structure of the configuration file 

In configuration files a set of UML classes of different models to-be mapped can be specified. The 
following attributes (or parameters) must be provided: 

• input: The path to the model's XMI file. 

• type: The type of the model determines the plugin used for mapping, i.e. type can be 
"aixm_5-1-1", "fixm_3-0-1_sesar" or "plain". 

• output: The path to the to-be generated RDFS/SHACL document. 

• connectorLevel: The number i of the connector level indicates that UML classes reachable by 
at most i connection step from a specified UML class are also to be included in the mapping. 

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/_sampleJavaProgram/SampleProgram/src/main/java/at/jku/dke/samples/ValidationWithSHACL.java
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The connectorLevel can be "1", "2", ..., "n". Value n stands for possibly infinite number of 
traversals. It is recommended to use "n" to include not visible classes (especially from 
stereotype "choice" in AIXM and FIXM) of a data graph. However, using connectorLevel "n" 
decreases performance and increases the size of the schema eventually including classes 
which are not required. If "n" is not used, then the connector level should be choosen in a 
way that it resolves necessary datatypes, e.g. in AIXM a minimum of connector level 4 is 
recommended. 

The example below shows that the the classes "AirportHeliport" and "City" of the model at 
"input/AIXM_5.1.1.xmi" should be mapped by the plugin with the name "aixm_5-1-1" and using a 
connector level of "n". 

 <configuration> 

  <selection> 

   <models> 

    <model input="input/AIXM_5.1.1.xmi" type="aixm_5-1-1" 

output="output/AIXM_example.xml"> 

     <classes connectorLevel="n"> 

      <class>AirportHeliport</class> 

      <class>City</class> 

     </classes> 

    </model> 

    <model ... > 

     ... 

    </model> 

   </models> 

  </selection> 

 </configuration> 

2.2.2 How-to: Writing a configuration file 

In order to determine the UML classes to be selected, only consider UML classes from the 
namespace of the model. In addition, TimeSlice classes in AIXM cannot be selected because they are 
not part of the AIXM UML class diagrams, instead they are generated by the mapper if the parent 
feature (i.e. the feature class to which the feature timeslice class belongs) is selected. As an example, 
see the decisions for the configuration of the Donlon airport example. 

Additional configuration files can be maintained without changing existing ones. However, the 
mapper can only consider one configuration file at a time. Make sure that the reference to the to-be 
used configuration file is correctly set in the mapper.xq (variable $config). 

2.2.3 How-to: Extensions 

In case the mapper should be further configurable by attributes or connections of classes which 
should only be mapped or which should not be mapped, this information should be provided as an 
inclusion or exclusion list in the configuration file. As an example: 

  

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/configurations/AIXM_DONLON.xml
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/_exampleData/AIXM_DONLON.ttl
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... 

 <classes> 

  <class name="AirportHeliport"> 

   <attributes> 

    <attribute>name</attribute> 

   </attributes> 

   <connectors> 

    <connector>serves</connector> 

   </connectors> 

  </class> 

  ... 

 </classes> 

... 

 

The extractor module needs to be adapted accordingly. Furthermore, one must consider this 
configuration in the mapping plugins. Simply check while mapping attributes or connectors of an 
UML class if this attribute or connector is part of the list in the configuration file. 

2.3 Mapper 

2.3.1 mapper.xq 

The mapper.xq is the main module of the mapper. The variable $config refering to the location of the 
configuration file needs to be set externally. For each model specified in the configuration file, it 
delegates the extraction process to the extractor.xq. After the extraction the mapper delegates the 
mapping process to the corresponding plugin, and finally writes the result to a file. 

2.3.2 extractor.xq 

The extractor.xq extracts a subset of UML classes and connections from an XMI file based on the 
configuration file. The following steps are performed: 

1. Extracting the selected UML classes 
2. Extracting of corresponding UML classes and connections (recursive):  

1. Extract outgoing connections from the set of selected and extracted UML classes 
2. Extract UML classes with an ingoing connection from 2.1. 
3. Extract UML classes which are association classes of connections from 2.1. 
4. Extract UML classes which are the range of attributes of selected and extracted UML 

classes 
5. If connectorLevel="n":  

1. If the extracted model subset increased in size, then add another cycle of 
extraction. 

2. Otherwise, return the extracted model subset. 
6. Otherwise:  

1. If the extracted model subset increased in size and connectorLevel > 1, then 
add another cycle of extraction and reduce the connectorLevel by 1. 

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/mapper.xq
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/extractor.xq
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2. Otherwise, return the extracted model subset. 

In the end, the extracted model subset is returned to the mapper.xq. 

2.3.3 Plugins 

Plugins are implementations of different models' mapping semantics. Each plugin is a XQuery module 
with the task to map a given model subset to an RDFS/SHACL document. We use different plugins for 
different models because there is no one fits all mapping approach. For example, stereotypes or 
attributes may have different meanings or may be used differently in different models. By default, 
the following plugins are available: 

1. utilities.xq provides basic functionality for plugins 
2. aixm_5-1-1.xq for AIXM 5.1.1 
3. fixm_3-0-1_sesar.xq for FIXM 3.0.1 SESAR 
4. plain.xq for plain UML models (no consideration of stereotypes) 

The mapper can simply be extended by adding new plugins as XQuery modules to the plugin folder 
and by adding them to the delegation of the mapping process in the mapper.xq (variable 
$mappedModel). A new plugin may be useful, if a model needs to be mapped that uses stereotypes 
differently than in previous models. In addition, a new plugin may also be useful, if an existing plugin 
needs to be adapated, e.g. different namespaces or updating the meaning of a stereotype. 

2.3.3.1 utilities.xq 

The utilities.xq provides basic functionality used in the plugins. It provides two functions: 

1. Transform a sequence of elements to an RDF/XML list 
2. Find super classes of an class in a given model subset with two options:  

1. Super elements are not from a certain stereotype 
2. Call this function recursively to find all super classes of a class 

2.3.3.2 plain.xq 

The plain.xq targets models which are not based AIXM and FIXM and do not use stereotypes.  

2.3.3.2.1 Mapping of UML classes 

For each UML class from the extracted subset, a SHACL shape / RDFS class is generated. Super classes 
of a UML class are mapped into rdfs:subClassOf and sh:and. Attributes are mapped into optional 
property shapes, while connections are mapped into property shapes with the cardinality of the 
relationship being represented in the sh:minCount and sh:maxCount. If a UML class is an association 
class, connections are resolved such that the source class has a property shape which targets the 
association class, while the association class has a property shape which targets the target class. 

2.3.3.3 aixm_5-1-1.xq 

The aixm_5-1-1.xq targets models which are based on AIXM 5.1.1. First, basic elements are added 
and then, element by element of the extracted model subset is mapped. 

https://github.com/jku-win-dke/AISA-XMI-Mapper/tree/main/plugins
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/plugins/utilities.xq
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/plugins/plain.xq
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/plugins/aixm_5-1-1.xq
http://www.aixm.aero/page/aixm-511-specification
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2.3.3.3.1 Basic Elements for AIXM features 

If the extracted model subset contains an element with stereotype "feature", the following basic 
classes are added to the result: 

An empty SHACL shape named "aixm:AIXMFeature" which could be extended by general AIXM 
feature properties. This shape represents the abstract AIXMFeature class. Its identifier attribute is 
not mapped into a property shape because the identifier of features is used as resource identifier 
(IRI). 

1.  aixm:AIXMFeature a sh:NodeShape . 

 

A SHACL shape named "aixm:AIXMTimeSlice" which keeps general and mandatory attributes of 
feature time slices, i.e. gml:validTime, aixm:interpretation, aixm:sequenceNumber, 
aixm:correctionNumber. 

2.  aixm:AIXMTimeSlice  
3.   a sh:NodeShape ; 
4.   sh:property [  
5.    sh:maxCount 1 ; 

6.    sh:minCount 1 ; 

7.    sh:node aixm:NoNumberType ; 

8.    sh:path aixm:correctionNumber 

9.   ] ; 
10.   sh:property [ 

11.    sh:maxCount 1 ; 

12.    sh:minCount 1 ; 

13.    sh:node aixm:NoNumberType ; 

14.    sh:path aixm:sequenceNumber 

15.   ] ; 

16.   sh:property [  

17.    sh:maxCount 1 ; 

18.    sh:minCount 1 ; 

19.    sh:node aixm:TimeSliceInterpretationType ; 

20.    sh:path aixm:interpretation 

21.   ] ; 

22.   sh:property [  

23.    sh:class gml:TimePeriod ; 

24.    sh:maxCount 1 ; 

25.    sh:minCount 1 ; 

26.    sh:path gml:validTime 

27.   ] . 

 

A SHACL shape and RDFS class named "gml:TimePeriod" (type of gml:validTime) which keeps a 
gml:beginPosition and a gml:endPosition. 

28.  gml:TimePeriod  

29.   a rdfs:Class , sh:NodeShape ; 

30.   sh:property [  

31.    sh:maxCount 1 ; 

32.    sh:minCount 1 ; 

33.    sh:node gml:TimePrimitive ; 
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34.    sh:path gml:endPosition 

35.   ] ; 

36.   sh:property [  

37.    sh:maxCount 1 ; 

38.    sh:minCount 1 ; 

39.    sh:node gml:TimePrimitive ; 

40.    sh:path gml:beginPosition 

41.   ] . 

 

A SHACL shape named "gml:TimePrimitive" (type of gml:beginPosition and gml:endPosition) which 
can have xsd:dateTime as rdf:value or can be a gml:indeterminatePosition. 

42.  gml:TimePrimitive  

43.   a sh:NodeShape ; 

44.   sh:property [  

45.    sh:datatype xsd:string ; 

46.    sh:maxCount 1 ; 

47.    sh:path gml:indeterminatePosition ; 

48.    sh:in ( "after" "before" "now" "unknown" ) 

49.   ] ; 

50.   sh:property [  

51.    sh:datatype xsd:dateTime ; 

52.    sh:maxCount 1 ; 

53.    sh:path rdf:value 

54.   ] ; 

55.   sh:xone (  

56.    [  

57.     sh:property [  

58.      sh:minCount 1 ; 

59.      sh:path rdf:value 

60.     ] 

61.    ] 

62.    [  

63.     sh:property [  

64.      sh:minCount 1 ; 

65.      sh:path gml:indeterminatePosition 

66.     ]  

67.    ] 

68.   ) . 

 

A SHACL shape named "aixm:TimeSliceInterpretationType" (type of aixm:interpretation) which can 
have the rdf:value "BASELINE" or "TEMPDELTA". 

69.  aixm:TimeSliceInterpretationType  

70.   a sh:NodeShape ; 

71.   sh:property [  

72.    sh:in ( "BASELINE" "TEMPDELTA" ) ; 

73.    sh:maxCount 1 ; 

74.    sh:minCount 1 ; 

75.    sh:path rdf:value 

76.   ] . 

 

A SHACL shape named "aixm:NoNumberType" (type of aixm:sequenceNumber and 
aixm:correctionNumber) which has an xsd:unsignedInt as rdf:value. 
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77.  aixm:NoNumberType  

78.   a sh:NodeShape ; 

79.   sh:property [  

80.    sh:datatype xsd:unsignedInt ; 

81.    sh:maxCount 1 ; 

82.    sh:minCount 1 ; 

83.    sh:path rdf:value 

84.   ] . 

 

These basic elements are mandatory for AIXM features and not modelled accordingly in the AIXM 
5.1.1 UML class diagrams, therefore, they are added manually. Other GML constructs like gml:pos 
inherited through gml:Point are also not part of the AIXM 5.1.1 UML class diagrams. A generated 
AIXM RDFS/SHACL document could be combined with a GML RDFS/SHACL document for a complete 
validation of the data. 

2.3.3.3.2 Basic Mapping Methods 

Some mapping methods in AIXM are used in multiple cases, including mapping of attributes, 
connectors and association classes: 

Attributes of a UML class are mapped into optional (i.e. sh:minCount 0) property shapes with the 
attribute type being the target node. The name of the attribute is used as sh:path. Example attribute 
aixm:name of aixm:AirportHeliport: 

1.  aixm:AirportHeliportTimeSlice 
2.   sh:property [ 
3.    sh:path aixm:name ; 

4.    sh:node aixm:TextNameType ; 

5.    sh:maxCount 1 ; 

6.   ] . 
 

Connections to other UML classes are mapped into property shapes with the sh:minCount and 
sh:maxCount representing the cardinality of the relationship. The target class is specified by the 
sh:class constraint. If a role name is provided, this name is used for sh:path. Otherwise, the sh:path is 
the combination of "the" plus the target class name. There is an exception of mapping connections: 
association classes. If an association class for a connection exists, the property of the source UML 
class targets the association class. Furthermore, the association class has a property shape which 
targets the connection's target class. Example of aixm:AirportHeliport with a connection to the class 
aixm:City and a connection to the class aixm:OrganisationAuthority with an association class with the 
association class aixm:AirportHeliportResponsibilityOrganisation: 

7.  aixm:AirportHeliportTimeSlice 
8.   sh:property [  
9.    sh:class aixm:City ; 

10.    sh:path aixm:servedCity 

11.   ] ; 

12.   sh:property  [  

13.    sh:class 

aixm:AirportHeliportResponsibilityOrganisation ; 

14.    sh:maxCount 1 ; 

15.    sh:path aixm:responsibleOrganisation 

16.   ] . 
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A UML class can be an association class for a connection between two other classes. As already 
explained above, a property shape is added to an association class targeting the connection's target 
class. The sh:path is always the combination of "the" plus the target class name since the role name 
is already used by the source class. Example of the connection between aixm:AirportHeliport and 
aixm:OrganisationAuthority with aixm:AirportHeliportResponsibilityOrganisation as assocation class: 

17.  aixm:AirportHeliportResponsibilityOrganisation 

18.   sh:property [ 

19.    sh:class aixm:OrganisationAuthority ; 

20.    sh:maxCount 1 ; 

21.    sh:minCount 1 ; 

22.    sh:path aixm:theOrganisationAuthority 

23.                   ] . 

2.3.3.3.3 Mapping of UML classes 

UML classes of AIXM 5.1.1 are mapped based on their stereotype: 

Stereotype "feature": For each UML class with stereotype "feature" two SHACL shapes / RDFS classes 
are generated. The first SHACL shape / RDFS class extends the aixm:AIXMFeature shape and has only 
one property named aixm:timeSlice. The second SHACL shape / RDFS class extends the 
aixm:AIXMTimeSlice shape and is named like the UML class with the phrase "TimeSlice" added at the 
end. For each super class of the feature, a rdfs:subClassOf and sh:and statement are added to the 
corresponding TimeSlice. Furthermore, the TimeSlice holds all attributes and connections of the 
corresponding feature as property shapes. Therefore, the three basic methods explained above are 
used. Example feature aixm:AirportHeliport with aixm:AirportHeliportTimeSlice: 

1.  aixm:AirportHeliport 
2.   a rdfs:Class , sh:NodeShape ; 
3.   sh:and ( aixm:AIXMFeature ) ; 
4.   sh:property [  
5.    sh:path aixm:timeSlice ; 

6.    sh:class aixm:AirportHeliportTimeSlice ; 

7.   ] . 
8.  aixm:AirportHeliportTimeSlice 
9.   a rdfs:Class , sh:NodeShape ; 
10.   sh:and ( aixm:AIXMTimeSlice ) ; 

11.   sh:property [ 

12.    sh:path aixm:name ; 

13.    sh:node aixm:TextNameType ; 

14.    sh:maxCount 1 ; 

15.   ] ... . 

 

Stereotype "object": For each UML class with stereotype "object" a SHACL shape / RDFS class is 
generated. Super classes and the three basic mapping methods are used exactly in the same way as 
in UML classes with stereotype "feature". The only difference between features and objects is that 
there are no added TimeSlice classes for objects. Example aixm:AirportHeliportUsage: 

16.  aixm:AirportHeliportUsage 

17.   a rdfs:Class , sh:NodeShape ; 

18.   rdfs:subClassOf aixm:UsageCondition ; 

19.   sh:and ( aixm:UsageCondition ) ; 
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20.   sh:property [  

21.    sh:maxCount 1 ; 

22.    sh:node aixm:CodeOperationAirportHeliportType ; 

23.    sh:path aixm:operation 

24.   ] . 

 

Stereotype "CodeList": For each UML class with stereotype "CodeList" a SHACL shape is generated. 
Its attribute names are allowed values and therefore mapped as a SHACL list into sh:in. If a super 
class with stereotype "XSDsimpleType" exists, a SHACL datatype statement is added. Example 
aixm:NilReasonEnumeration and aixm:UomDistanceVerticalType: 

25.  aixm:NilReasonEnumeration 

26.   a sh:NodeShape ; 

27.   sh:datatype xsd:string ; 

28.   sh:in ( "inapplicable" "missing" "template" "unknown" 

"withheld" "other" ) . 

29.  aixm:UomDistanceVerticalType 

30.   a sh:NodeShape ; 

31.   sh:datatype  xsd:string ; 

32.   sh:in ( "FT" "M" "FL" "SM" "OTHER" ) . 

 

Stereotype "DataType": For each UML class with stereotype "DataType" a SHACL shape is generated. 
For each super class with stereotype "DataType", a sh:and statement is added. The property shape 
with sh:path rdf:value is always added to classes with stereotype "DataType". If a super class with 
stereotype "XSDsimpleType" exists, a sh:datatype constraint is added for the rdf:value property 
shape. If a super class with stereotype "CodeList" exists, a sh:node constraint is added for the 
property shape of rdf:value. If an attribute with stereotype "XSDfacet" exists, it is added as 
corresponding SHACL constraint (e.g. minLength) for the rdf:value property shape. If a super class 
with stereotype "XSDsimpleType" exists, a SHACL datatype constraint is added for the rdf:value 
property shape. All other attributes with stereotype not being "XSDfacet" are mapped according to 
the basic mapping of attributes. If an attribute from type "NilReasonEnumeration" exists, a SHACL 
exactly one (sh:xone) constraint is added, specifying that either a aixm:nilReason can occur or all 
other properties and rdf:value. Classes with stereotype "DataType" are typically used in attributes 
and not in connections, thus, the basic mapping methods 2 and 3 are not used. Example 
aixm:ValDistanceVerticalType and its super class aixm:ValDistanceVerticalBaseType: 

33.  aixm:ValDistanceVerticalType 

34.   a sh:NodeShape ; 

35.   sh:and ( aixm:ValDistanceVerticalBaseType ) ; 

36.   sh:property [  

37.    sh:maxCount 1 ; 

38.    sh:node aixm:NilReasonEnumeration ; 

39.    sh:path aixm:nilReason 

40.   ] ; 

41.   sh:property [  

42.    sh:maxCount 1 ; 

43.    sh:node aixm:UomDistanceVerticalType ; 

44.    sh:path aixm:uom 

45.   ] ; 

46.   sh:property [  

47.    sh:maxCount 1 ; 

48.    sh:path rdf:value 
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49.   ] ; 

50.   sh:xone ( 

51.    [  

52.     sh:property [  

53.      sh:minCount 1 ; 

54.      sh:path rdf:value 

55.     ] ; 

56.     sh:property [ 

57.      sh:path aixm:uom 

58.     ]  

59.    ] 

60.    [  

61.     sh:property [  

62.      sh:minCount 1 ; 

63.      sh:path aixm:nilReason 

64.     ]  

65.    ] 

66.   ) . 

67.  aixm:ValDistanceVerticalBaseType 

68.   a sh:NodeShape ; 

69.   sh:property [  

70.    sh:datatype xsd:string ; 

71.    sh:maxCount 1 ; 

72.    sh:path rdf:value ; 

73.    sh:pattern "^((\\+|\\-){0,1}[0-9]{1,8}(\\.[0-

9]{1,4}){0,1})|UNL|GND|FLOOR|CEILING$" 

74.   ] . 

 

Stereotype "choice": For each UML class with stereotype "choice" a SHACL shape is generated. The 
generated SHACL shape is only a link between a UML class and a choice between allowed classes. 
Therefore, the SHACL shape of the choice class only contains the connections in a sh:xone (only one 
connection is allowed). Example aixm:SignficantPoint: 

75.  aixm:SignificantPoint 

76.  a sh:NodeShape ; 

77.  sh:xone ( 

78.   [ sh:class aixm:AirportHeliport ] 

79.   [ sh:class aixm:TouchDownLiftOff ] 

80.   [ sh:class aixm:RunwayCentrelinePoint ] 

81.   [ sh:class aixm:Point ] 

82.   [ sh:class aixm:Navaid ] 

83.   [ sh:class aixm:DesignatedPoint ] 

84.  ) . 

 

Stereotype "XSDsimpleType": No mapping. Super classes with this stereotype are used to derive 
sh:datatype constraints in sub classes (with stereotype "DataType" or "CodeList"). 

Stereotype "XSDcomplexType": No mapping. 

No stereotype: UML classes with no stereotypes are mapped the same as UML classes with 
stereotype "object". Example gml:Point: 

85.  gml:Point a rdfs:Class , sh:NodeShape . 
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2.3.3.4 fixm_3-0-1_sesar.xq 

The fixm_3-0-1_sesar.xq target models which are based on FIXM 3.0.1 SESAR. 

2.3.3.4.1 Mapping of UML classes 

UML classes of FIXM 3.0.1 SESAR are mapped based on their stereotype: 

Stereotype "enumeration": For each UML class with stereotype "enumeration" a SHACL shape is 
generated. It has a single mandatory (sh:minCount 1) property with the sh:path being fixm:uom or 
rdf:value. In case the name of the UML class contains "Measure" the sh:path is fixm:uom, otherwise 
it is rdf:value. The attribute names of the UML class are allowed values and therefore mapped as a 
SHACL list into sh:in. Example fixm:AbrogationReasonCode and fixm:TemperatureMeasure: 

1.  fixm:AbrogationReasonCode 
2.   a sh:NodeShape ; 
3.   sh:property [  
4.    sh:in ( "TFL" "ROUTE" "CANCELLATION" "DELAY" "HOLD" ) ; 

5.    sh:minCount 1 ; 

6.    sh:path rdf:value 

7.   ] . 
8.  fixm:TemperatureMeasure 
9.   a sh:NodeShape ; 
10.   sh:property [ 

11.    sh:in ( "FARENHEIT" "CELSIUS" "KELVIN" ) ; 

12.    sh:minCount 1 ; 

13.    sh:path fixm:uom 

14.   ] . 

 

Stereotype "choice": For each UML class with stereotype "choice" a SHACL shape is generated. There 
are two different cases: (1) a choice class is used as attribute or (2) a choice class is used via 
connections. In case (1) the generated SHACL shape is only a link between a UML class and a choice 
between allowed attributes or connected classes. Therefore, the SHACL shape of the choice class 
only contains the attributes and connections in a sh:xone (only one attribute or connection is 
allowed). In case (2) the generated SHACL shape is also an RDFS class. It also provides the choice 
between attributes and connections in a sh:xone but including their paths and maxCount constraint. 
Example fixm:PersonOrOrganization (case 1) and fixm:AircraftType (case 2): 

15.  fixm:PersonOrOrganization 

16.   a sh:NodeShape ; 

17.   sh:xone ( 

18.    [ sh:class  fixm:Organization ] 

19.    [ sh:class  fixm:Person ] 

20.   ) . 

21.  fixm:AircraftType  

22.   a rdfs:Class , sh:NodeShape ; 

23.    sh:xone (  

24.    [  

25.     sh:property [  

26.      sh:maxCount 1 ; 

27.      sh:minCount 1 ; 

28.      sh:node fixm:IcaoAircraftIdentifier ; 

29.      sh:path fixm:icaoModelIdentifier 

30.     ] 

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/plugins/fixm_3-0-1_sesar.xq
https://www.fixm.aero/release.pl?rel=SESAR_Ext-1.0
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31.    ] 

32.    [  

33.     sh:property [  

34.      sh:maxCount 1 ; 

35.      sh:minCount 1 ; 

36.      sh:node fixm:FreeText ; 

37.      sh:path fixm:otherModelData 

38.     ] 

39.    ] 

40.   ) . 

No stereotype: For each UML class with no stereotype a SHACL shape is generated. If a UML class or 
one of its super classes are not based on an XSD datatype, it is also an RDFS class with its super 
classes as rdfs:subClassOf Triple added. In every case, super classes are added as sh:and statements. 
In case, there is an attribute called "uom", an sh:and statements needs to include the SHACL shape of 
that attribute. If the UML class (or one of its super classes) is connected to an XSD datatype, a SHACL 
property shape with sh:path rdf:value is added (together with its constraints and datatype). 
Attributes of classes are mapped into optional property shapes. In case the type of an attribute is 
one of a few possible XSD datatypes, the attribute's property shape targets a blank node shape with 
a single property shape that has the rdf:value as sh:path. The blank node shape is necessary to keep 
the structure of instance data consistent. In all other cases, attributes are simply mapped into 
optional property shapes. Connections of a UML class are also mapped into property shapes. 
Example attribute fixm:topOfClimb with an XSD datatype in fixm:TrajectoryPointRole, and attribute 
fixm:aircraftColours as well as connection fixm:aircraftType in fixm:Aircraft: 

41.  fixm:TrajectoryPointRole 

42.   a rdfs:Class , sh:NodeShape ; 

43.   sh:property [  

44.    sh:maxCount 1 ; 

45.    sh:node [  

46.     a sh:NodeShape ; 

47.     sh:property [  

48.      sh:datatype xsd:boolean ; 

49.      sh:path rdf:value 

50.     ] 

51.    ] ; 

52.    sh:path fixm:topOfClimb 

53.   ] ... . 

54.  fixm:Aircraft  

55.   a rdfs:Class , sh:NodeShape ; 

56.   rdfs:subClassOf fixm:Feature ; 

57.   sh:and ( fixm:Feature ) ; 

58.   sh:property [  

59.    sh:node fixm:FreeText ; 

60.    sh:maxCount 1 ; 

61.    sh:path fixm:aircraftColours 

62.   ] ; 

63.   sh:property [  

64.    sh:class fixm:AircraftType ; 

65.    sh:maxCount 1 ; 

66.    sh:path fixm:aircraftType 

67.   ] ... . 
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2.4 RDFS/SHACL Document 

The resulting document combines RDFS and SHACL because in AISA both formats are generated from 
the same source and used together. The combination of RDFS and SHACL is very similar to UML class 
diagrams. 

Example aixm:AirportHeliport: 

aixm:AirportHeliport 

 a rdfs:Class ;  # This is RDFS! 

 a sh:NodeShape ; # This is SHACL! 

 ... . 
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3 Proof-of-Concept KG System 

We developed the architecture for the AISA KG system, a compact Java library (delivered as Java 
package in GitHub repository https://github.com/bneumayr/aisa-kg-system/) supporting this 
architecture, and a small proof-of-concept KG system (also delivered as a Java package in the GitHub 
repository) exemplifying the architecture as well as the usage of the Java library.   

The AISA Project-level Concept of Operations set out in Chapter 5 of Deliverable 2.1 has at its center 
the ATC Knowledge Graph (KG). In this section we describe an architecture for the data and metadata 
in such a KG and for the software components for incrementally processing and querying the data in 
the KG. The Proof-of-Concept KG System exemplifies this architecture and has the purpose of guiding 
further developments in WP 4 and WP 5. The proposed architecture of a KG system facilitates 
SPARQL Queries Capturing Monitoring Tasks based on traffic/airspace data converted to RDF. It 
further accomodates the integration with other components such as the Prolog Reasoning Engine in 
Prolog developed in Task 4.2  and Machine Learning Modules developed in WP3. The main goal is to 
develop and assess the concept of the artificial SA based on a KG from a functional perspective rather 
than to consider requirements of a real-time life system.  

Air traffic data comes at rather high frequency, for example new flight states every 10 seconds, and 
the SPARQL queries capturing monitoring task need to consider the newly incoming data but also 
consider how the new flight states compare to previous flight states. Monitoring queries should not 
be formulated only against the 'raw' input data but the input data should be processed beforehand, 
calculations made, common parts of queries should be executed once and materialized so that many 
queries can reuse the results. We also have to consider that some parts of monitoring queries are 
difficult or impossible to formulate in SPARQL, especially spatio-temporal calculations such as, as a 
simple example, the distance between two flights. With new incoming data the intermediate results 
have to be updated as well, for this purpose the KG system needs to support incremental processing 
– avoiding the need to recalculate and query everything from scratch once new data arrives. 
Furthermore, an artificial SA is history sensitive and the KG thus needs to keep track of all its previous 
states.          

3.1 Requirements and Setting 

Based on the project-level concept of operations and discussions we collected the following 
requirements for a KG system architecture suitable for AISA.   

The architecture should accommodate   

• Recurring SPARQL queries for monitoring the situation (situational awareness is 'translated' 
into SPARQL queries).  

• Ad-hoc SPARQL queries for checking the KG's state during an experiment.   

• RDF Schema reasoning to consider subClassOf and subPropertyOf hierarchies in the global 
schema when necessary 

• SHACL Validation: checking conformance against global schema when loading data 
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• Simple Inference/Derivation rules are formulated in SPARQL update requests or construct 
queries (there is no need for SHACL rules which would serve the same purpose).  

• Arithmetic and spatio-temporal processing will be coded in Java programs  (e.g., calculate 
distance between two flights) and not in SPARQL.  

• External modules (e.g., machine learning modules, data from KG as input for ML models and 
predictions from ML as input to KG) will be loosely coupled via file import and epxort and 
with asynchronous processing. 

• Data loading, i.e., loading of asserted data, can be done incrementally (data loaded into the 
KG as they arrive over time) or at once (data with different timestampls loaded into the KG at 
once  

• The experiments conducted in Task 5.1 to assess AI SA will be conducted with one software 
component which should have central control over the experiment.  

• History sensitiveness and traceability: every piece of data or metadata in the KG comes with 
the following metadata: when was the piece of data inserted into the KG and by which 
module. Further, in case of derived informaton, it must be traceable based on which state of 
the KG the data was derived.  

• Distinguishing logical time (or simulation time) and physical system time: to rerun 
experiments or to run experiments in 'slow-motion' the system needs to distinguish between 
logical system time  and physical system time (the real time of the system for performance 
measurements). To make the difference clear: when rerunning an experiment the logical 
times remain the same while the physical times change. Logical time progress should be 
under the control of the person or system who runs an experiment.  

• Transaction time (logical and/or physical system time) vs Observation/Occurrence time: The 
occurrence time is the time in the real world when an event happens or is predicted to 
happen, the transaction time (no matter if physical or logical) is the time when the 
information about the event is added to the KG.   

• Incremental Processing/Querying: adding data to the KG should not make necessary to rerun 
from scratch all queries. Recurring queries should only consider the data added since their 
last invocation.  

Requirements for technology choices 

• The programming language of choice in AISA is Java. There is no need for GUIs or otherwise 
advanced user interfaces. Experiments will be automated in Java or via simple command line 
interfaces. It is more important to provide the functionality via Java or provide Java code 
snippets demonstrating how things should be done according to the architecture.  

• The core components should be based on open-source technology so that the produced 
software can also be made available open source as to maximize impact  

Keeping in mind the short project duration and limited resources one of the central design goals is to 
keep everything as simple as possible. To this end we specifiy deliberate limitations of the KG 
systems. These limitations help to simplify the implementation, maintenance, orchestration, and 
traceability of the experiments:   

• Append-only: once added to the KG, data is not changed/updated anymore. Only outdated 
data that is not needed/queried anymore may be retracted from the KG (without 
consequences on the querying).  
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• Central control with serialized engine invocations: For the setup of the experiments we 
assume central control with synchronous (i.e., serialized) invocation of modules and, hence, 
serialized 'transactions' on the KG, avoiding the need for concurrency control which would 
add to the technical complexity of the KG system without clear benefits for the experiments 
conducted in WP 5. The only exception to this rule are ad-hoc queries (but by only querying 
'committed' named-graphs and ignoring 'in-progress' named graphs these ad-hoc queries can 
also be considered 'serialized').   

• Asynchronous processing (with external modules) is supported by two connected module 
invocations (two separate but connected KG transactions) akin to check-out and check-in in 
version control systems: first, an invocation to export data from the KG which is used as 
input for the external module and, second, an invocation to import the results of the external 
module to the KG. The external processing happens in-between these two invocations in an 
asynchronous manner without access to the KG.  

RDF gives a lot of freedom. How to deal with this freedom and what basic structure we impose is the 
topic of this section. Named graphs are used to facilitate the management of the knowledge graph 
(such as for incremental/partial replication, incremental processing, purging of old data). The named 
graphs do not come with metadata that are of interest in user queries but only with administrative 
metadata that is needed to decide whether a named graph should be considered in a query or in 
some part of a query.  

3.2 System Components and Deployment 

All the basic functionality for working with RDF, RDFS, SPARQL, and SHACL in Java is provided by the 
open-source software library Apache Jena. As RDF graph store we use Jena TDB and as SPARQL 
server we use Apache Jena Fuseki which comprises Jena TDB.  

 

Figure 2 Components of the KG System  

The KG system runs in two Java processes, one is the KG Server, which is an Apache Jena Fuseki 
instance, which acts as storage engine and SPARQL server, the other is the central control 

KG Manager 

KG Server 
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component referred to as KG Manager which has registered a set of KG modules (implemented by 
subclassing Java class provided with our Java library) which interact with the KG Server via SPARQL. 
The loosely coupled integration via file export and file import of external software components (such 
as the ML modules developed in WP 3) is also accomplished by KG modules which run as part of the 
KG Manager.    

3.2.1 Configuring Apache Jena Fuseki 

Currently we are using version 3.16 of  Apache Jena Fuseki 3.16 as a stand-alone server with UI. 
(Apparently there are problems with the current version 3.17 with creating and fetching datasets). 
Fuseki is configured with a single dataset (holding the AISA KG), made available via service 
http://localhost:3030/aisakg/. To simplify switching between different configurations (for 
performance studies) of the service available at /aisakg/, different configuration files may be added 
to Fuseki's main directory with different batch files to start Fuseki with one of these configurations. 

The configuration files are contained in the github repository in folder fuseki-configs/. They can be 
added to Fuseki's installation directory and started with, for example: 

> java -Xmx1200M -jar fuseki-server.jar --config=AISA-config-tdb.ttl    

The Fuseki standalone server also serves a web application which can be used to pose queries and 
inspect the current state of the AISA KG. There is no need to use this web interface for adding 
datasets or for further configurations. We will mainly use it for ad-hoc queries to inspect/debug the 
state of the AISA KG during experiments which are controlled from Java programs.  The web interface 
also provides an overview of the available services/endpoints (as configured by us) and some 
statistics.  

3.3 KG System Architecture 

From a conceptual/logical perspective, a KG system comprises a KG, which is an RDF Dataset, and a 
KG Module System (see Figure 3).  

The KG which can be identified and located by its URL consists of a set of Named Graphs, i.e., RDF 
Graphs each identified by a URI. We distinguish Named Graphs into Static Data Named Graphs, 
which are created once and do not change afterwards, Dynamed Data Named Graphs, and New Data 
Named Graphs. A dynamic data named graph has a sequence of new data named graphs as 
components with new data named graphs appended over time. The URI of a new data named graph 
is constructed from the URI of the dynamic data named graph it belongs to and its sequence number. 
A new data named graph comes with temporal metadata indicating when it was inserted and 
committed to the KG (commitTime) and on which state of the KG it is based on (basedOnTime). A 
dynamic data named graph may materialize the union of its new data named graphs with metadata 
lastRefresh indicating when this union was refreshed the last time.       

The KG Module System (which represents the central control component of the KG Manager process) 
comprises a set of KG Modules and controls the invocation of these modules and is also responsible 
for advancing the logical time of experiments. KG modules are distinguised into Single-run modules 
and multiple-run modules. A single-run module creates a static data named graph and a multiple-run 
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module creates and maintains a dynamic data named graph and creates the new data named graphs 
belonging to that dynamic data named graph. Every time a multiple-run module is invoked, it creates 
a new new data named graph. Multiple-run modules are further distinguished into internal modules 
and external modules. Internal modules are invoked by calling method run() and are executed in a 
serialized manner with the resulting new data named graph being inserted and committed 
immediately. External modules are invoked by calling method exportInput() together with a later call 
of method importResults().  The KG (a persistent RDF dataset on the KG Server) is fully managed by 
the KG Module System in that every named graph in that RDF dataset is created by a module.       

 

Figure 3 Conceptual structural model in UML of the KG and the KG Module System  

3.3.1 Logical Time vs Physical Time 

In order to rerun experiments with exactly the same input data (possibly also with the same ML 
predictions) but possibly with different monitoring queries or different rule-based knowledge we 
need to distinguish logical time (or simulated time) from the physical system time. The physical 
system time is only used for performance time measurements while the logical time is in full control 
of the KG manager. 
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3.3.2 Metadata Management 

Each invocation of a module (via init(), run(), or exportInputs() followed by importResults()) produces 
a new named graph. What metadata is attached to such a named graph depends on the module, and 
it is hard-coded in the module. The module's named graph contains the module's static metadata. A 
new data named graph has at least the following generic metadata (which is managed by the system 
and needs not to be taken care of by the developers of a concrete KG system) : 

• invocation time (a logical timestamp) 

• commit time (a logical timestamp)  

• the dynamic data named graph it belongs to and indirectly the module that inserted it 

• sequence no (to simplify referring to previous turn, etc) 

3.3.3 Selecting collections of Named Graphs of Modules 

Objects are fully described within one graph, or, if the description is fragmented over multiple 
graphs, then this fragmentation is known at the schema level. Thus the developer can ask, based on 
this fragmentation schema knowledge, queries in the form "…  WHERE { GRAPH ?g { ?s ?p ?o }; 
GRAPH ?g2 { ?s ?p2 ?o2 } } …" without the danger of missing query solutions. If objects are 
represented in multiple graphs then the developer knows which parts are present in which graph and 
can formulate the queries accordingly. Thus, there is no necessity to build union graphs in advance 
for querying; instead as part of the queries for each graph pattern the graphs to be considered are 
specified within the query. To hugely simplify this approach, the Java library described in the next 
section comes with functionality for SPARQL preprocessing as described in Section 3.5. Additionally 
one has the option to build materialized union graphs by implementing method 
refreshDynamicDataNG() by the module  and by calling this method to refresh the materialized union 
graph.  

3.3.4 Deleting outdated new data named graphs 

Data should be organized in a way that allows to delete/archive outdated new data named graphs  
without affecting query results. In our approach new data named graphs can only be 
deleted/archived as a whole. If one wants to persist selected parts of a named graph one has to copy 
these before. As a consequence of the deliberate simplification that every multiple-run module is 
associated with exactly one dynamic data named and graph and hence one sequence of new data 
named graphs it is not possible to implement (in a simple and traceable form) different archival 
strategies within one module. This small drawback is much outweight by the major simplifications 
due to the enforcement of a one-to-one relationship between multiple-run modules and dynamic 
data named graphs.   
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3.4 Java Library  

The Java package supporting this approach is at.jku.dke.aisa.kg in the GitHub repository. 
Let us briefly explain how the conceptual model of Figure 3 is realized by this Java package. How to 
build a concrete KG system based on this package is demonstrated by package  
at.jku.dke.aisa.kg.sample1 which is described in Section 3.8. 

An instance of Java class KGModuleSystem has a connection con to an RDF dataset (typically stored 
on and served via Fuseki KG Server but the RDF dataset can also be in-memory and in the same Java 
process), defines namespace prefixes used by all modules, and manages the logicalTime 'clock' used 
for timestamping module versions.  

UML class KG Module (see Figure 3) is realized by a Java interface KGModule and a Java class 
AbstractKGModule. The interface defines methods that are meant to be called from the 
KGModuleSystem to which the KGModule belongs.  

• init() creates a static data or dynamic data named graph 

• register(KGModuleSystem) registers the KGModuleSystem with the module, is the inverse of 
KGModuleSystem::register(KGModule) and called by the latter to establish a bidirectional 
relationships between the KG module system and its modules 

• getName() returns the module's short name which is unique within the KGModuleSystem 

• getModuleIri() returns the module's full name (IRI) which is constructed from the global 
graph namespace specified by the KGModuleSystem and the module's short name  

The abstract class AbstractKGModule implements interface KGModule and specifies common 
functionality shared by all KG modules including the management of generic/administrative 
metadata. It implements the above methods with method init() calling an abstract method doInit() 
which is to be implemented by each concrete subclass of KGModule to load or create the module's 
named graph (either a static data named graph or a dynamic data named graph). Method doInit() is 
not included in the interface since it should be hidden from the KG manager, the latter should only 
call method init() which takes care of the generic metadata management which should not be 
reimplemented or overwritten by the concrete subclasses.   

Most KG modules will have their own concrete subclass of KGModule. In this case the module's short 
name will be hard-coded in the constructor of the concrete subclass making the class a singleton 
class. The architecture also allows concrete subclasses of KGModule that act as engine of multiple 
modules, in this case the module's name will be fixed when calling the constructor.       

UML class Single-Run Module is realized by Java interface SingleRunModule and absstract Java class 
AbstractSingleRunModule. Currently they are empty since single-run modules do not have generic 
functionality beyond what every module has. An example of a single-run module in KG system 
architecture is the schema module which creates the static data named graphs that contains the 
global RDFS vocabulary and the SHACL shapes. This global schema is written to the KG by invoking 
the module's init() method which in turn calls the doInit() method which is implemented by each 
concrete subclass of AbstractSingleRunModule.   
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UML class Multiple-run Module is realized by Java interface MultipleRunModule and abstract Java 
class AbstractMultipleRunModule. The interface adds method getTurn() which returns the current 
sequence number, which is incremented with each module invocation (also referred to as turn). The 
abstract class implements functionality common to internal and external modules such as 
getInputPath() and getOutputPath() which simplifies reading and writing from the file system based 
on generic module-specific file paths. Method initTurn() creates a new data named graph, queries 
the invocation time of the previous version and writes the first parts of the version specific metadata 
to the new data named graph including the logical invocationTime.  Method commitTurn() commits a 
new data named graph by writing the logical commitTime to the new data named graph. Most 
importantly, the abstract class implements SPARQL preprocessing of special graph vars (see Section 
on SPARQL preprocessing) which is an integral part of the approach. It facilitates the selection of (1) 
all committed new data named graphs of a dynamic data named graph, (2) only those committed 
since the previous invocation of the current module or (3) those committed before the previous 
invocation.  

UML class External Module is realized by Java interface ExternalModule and abstract Java class 
AbstractExternalModule.  The interface adds methods exportInput() and importResults(). The 
abstract class implements these two methods which take care of generic metadata management. A 
new data named graph is created by exportInput() and committed by importResults(). The abstract 
class also specifies abstract methods doExportInput() and doImportResults() which have to be 
implemented by concrete subclasses and which take care of the actual export and import.  

UML class Internal Module  is realized by Java interface InternalModule and abstract Java class 
AbstractInternalModule. The interface adds method run() which is implemented by the abstract 
class. Calling run() creates a new data named graph and immediately commits it. As part of running 
the module it also measures the physical time duration and writes it to the new data named graph, 
this performance measurement stored in the KG can be used for monitoring and reporting the 
performance of modules. Method run() also calls an abstract method doRun() which is to be 
implemented by each concrete subclass to specify the actual queries, update requests, and further 
operations which are to be executed for deriving the contents of the new data named graph. 

3.5 SPARQL Preprocessing 

Java class AbstractMultipleRunModule implements SPARQL preprocessing which facilitates the 
formulation of compact SPARQL queries over the versioned and modularized KG. The preprocessing 
does not abstract away the versioning and modularization approach but it helps to avoid the writing 
of boilerplate code to select the named graphs from the KG (considering the logical invocation time 
of the current module invocation and of the previous module invocation) which should be 
considered for queries or update requests. The basic assumption here is that the description of 
complex objects/events is not distributed arbitrarily over named graphs, under this assumption we 
do not need to provide union graphs for querying.  

A special graph variable has the form ?G<optional number>_<module_name>_<mode> where mode 
is one of "new", "old", or "all".  
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For example, any occurrence of  

GRAPH ?G2_adsb_new { 

is extended to (with 2021030117182300 being the previous invocation time and 2021030117184700 
being the current invocation time).  

GRAPH ?G2_adsb_new { 

 ?G2_adsb_new  

   aisa:module <http://aisa-project.eu/graphs/adsb>;  

    aisa:commitTime ?time_G12_adsb_new. 

    FILTER ( ?time_G2_adsb_new > 2021030117182300 )  

    FILTER ( ?time_G2_adsb_new < 2021030117184700 )  

 

Any occurrence of  

GRAPH ?G2_adsb_old { 

is extended to  

GRAPH ?G2_adsb_old { 

 ?G2_adsb_old  

   aisa:module <http://aisa-project.eu/graphs/adsb>;  

    aisa:commitTime ?time_G2_adsb_old. 

    FILTER ( ?time_G2_adsb_old < 2021030117182300 )  

Any occurrence of  

GRAPH ?G2_adsb_all { 

is extended to  

GRAPH ?G2_adsb_ all { 

 ?G2_adsb_ all 

   aisa:module <http://aisa-project.eu/graphs/adsb>;  

    aisa:commitTime ?time_G2_adsb_ all. 

    FILTER ( ?time_G2_adsb_ all < 2021030117184700 ) 

 

The SPARQL preprocessor identifies special graph vars (e.g., ?G12_adsb_new) and includes query 
parts that select named graphs based on the module (e.g., adsb) they belong to and based on their 
commit time (e.g., after the invocation time of the previous module version). Class 
AbstractMultipleRunModule provides a method that takes as input a non-preprocessed SPARQL 
query or updata request and produces as output a preprocessed SPARQL query. 

For example, the non-preprocessed SPARQL update request 

  INSERT { GRAPH ?TURN { 

      [] aisa:state ?state; 

          rdf:type aisa:LaggingState; 
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          aisa:lag ?lag. } } 

  WHERE { GRAPH ?G12_adsb_new { 

      ?state adsb:requestTime ?rtime; 

          adsb:hasTimePosition ?ptime. } 

      FILTER (?rtime > ?ptime) 

      BIND ((?rtime - ?ptime) AS ?lag)  } 

is expanded to 

PREFIX graphs: <http://aisa-project.eu/graphs/> 

PREFIX aisar: <http://aisa-project.eu/resources#> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

PREFIX xs: <http://www.w3.org/2001/XMLSchema#> 

PREFIX aisa: <http://aisa-project.eu/vocab#> 

PREFIX adsb: <http://aisa-project.eu/adsb#> 

INSERT { GRAPH graphs:adsbP1-5 { 

 [] aisa:state ?state; 

  rdf:type aisa:LaggingState; 

  aisa:lag ?lag. } } 

WHERE { GRAPH ?G12_adsb_new { 

 ?G12_adsb_new  

   aisa:module <http://aisa-project.eu/graphs/adsb>;  

    aisa:commitTime ?time_G12_adsb_new. 

    FILTER ( ?time_G12_adsb_new > 2021030117182300 )  

     # graphs with commit time > invocation time of previous turn  

    FILTER ( ?time_G12_adsb_new < 2021030117184700 )  

     # graphs with commit time < invocation time of current turn  

 ?state adsb:requestTime ?rtime; 

  adsb:hasTimePosition ?ptime. } 

 FILTER (?rtime > ?ptime) 

 BIND ((?rtime - ?ptime) AS ?lag)  } 

 

3.6 RDF Schema (RDFS) Reasoning 

Supported reasoning tasks: transitive closure of taxonomies (rdfs:subClassOf and 
rdfs:subPropertyOf).  

Location of RDFS statements: in one global schema 

Execution of reasoning: at query time (possibly with query preprocessing) 
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The AISA KG will have one named graph (referred to as graphs:schema) containing the RDFS 
vocabulary and global SHACL schema. RDFS inferences based on the transitive closures of 
rdfs:subPropertyOf and rdfs:subClassOf can be used using property path expressions (namely 
ZeroOrMorePath expressions with operator *). Whenever a query should not only consider the 
direct instances of a class but also the indirect instances of a class with regard to the schema the 
query should be transformed from, e.g.,  

WHERE {  

 ?s  rdf:type  schema:Person.  

} 

 

to  

 

WHERE {  

 ?s  rdf:type  ?C_schema_Person.  

 GRAPH graphs:schema { 

  ?C_schema_Person  rdfs:subClassOf*  schema:Person. 

 } 

} 

 

Similarly, triple patterns with properties for which also sub-properties should be matched should be 
transformed as follows. For example from 

WHERE {  

 ?s  schema:hasParent  ?o.  

} 

 

to  

 

WHERE {  

 ?s  ?P_schema_hasParent  ?o.  

 GRAPH graphs:schema { 

  ?P_schema_hasParent  rdfs:subPropertyOf*  schema:hasParent. 

 } 

} 

 

The automation of these transformation patterns is rather straightforward and subject to future 
work. Then the developer only only needs to write   
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WHERE {  

 ?s  rdf:type  ?C_schema_Person. 

 ?s  ?P_schema_hasParent  ?o. 

} 

and the graph patterns over the schema (shown above in red) are added by a SPARQL preprocessor. 

3.7 SHACL Validation 

SHACL validation should be done prior to committing a new data named graph of a module as part of 
the doRun() or doImportResults() actions. How to invoke SHACL validation from Java is described in 
Section 2.1.6.   

In some cases the to-be validated data graph will consist solely of a single new data named graph. in 
many cases the SHACL validation will need data from other named graphs in the KG. For this purpose 
it is up to the engine's developer to use a construct query to include these other named graphs into 
the data graph that is subject to validation.  

In the basic approach all the SHACL shapes are in the KGs global schema. The global schema may be 
extended by modules-pecific SHACL shapes (we will investigate this as part of developing the KG-
Prolog-Mapper in Task 4.2). In this case it will be up to the module's developer to specify the shapes 
graph accordingly as part of the implementation of the doRun() or doImportResults() actions. 

It is further up to the module's developer to specify exception handling in case of a negative SHACL 
validation report. One approach is to just add the validation report to the new data named graph so 
that it can be queried and considered in further processing steps as needed.  

3.8 Proof-of-Concept KG System  

The proof-of-concept KG system (delivered as Java package at.jku.dke.aisa.kg.sample1 on the GitHub 
repository) implements  

• a module adsb (class ADSBLoader) that incrementally loads ADS-B data into the KG. In the 
current implementation the ADBSLoader imports flight positions from a dataset contained in 
file input.trig (contained in folder fileinput/adsb/ associated with the module). File input.trig 
currently contains data generated from json-data retrieved from opensky-network.org every 
10 seconds for a bounding box surrounding Austria on Feb 09 2021 from 19:14:00 to 
19:24:50 and transformed to RDF based on code developed by students in a practical course 
under the supervision of Sebastian Gruber. The 59 named graphs are ordered by retrieval 
time with a distance of 10 seconds. The ADBSLoader imports one named graph per turn, 
hence, the real time distance between turns is 10 seconds. To make tests more interesting 
(especially with ADSBProcessor2) we have deleted one flight and state from graph:g0 and 
another one from graph:g1.  

• a module qadsb (class QueryADSB) which incrementally queries the contents of dynamic 
data named graph adsb and outputs the query results to the console.  
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• a module adsbP1 (class ADSBProcessor1) which incrementally identifies lagging flight states 
(i.e., flight states where the time position is older than the request time) and inserts these 
flights state classification into the KG and queries the newly inserted data to report them to 
the console 

• a module adsbP2 (class ADSBProcessor2) which incrementally identifies incoming flight and 
inserts these flight state classification into the KG and queries the identified incoming flights 
by 'joining' the newly created graph with existing adsb data   

• a module pairs (class FlightPairs) which incrementally identifies pairs of flights and pairs of 
flight states in adsb and adds them to the KG. The module also calculates a distance (only 
based on latitute and longitude, not translating into miles/kilometres) between the two 
flights, demonstrating how such calculations can be done in Java by selecting the relevant 
data using SPARQL, doing the calculations in Java, creating the RDF model in Java and writing 
the model back into a new data named graph on the KG.   

• a module report (class PerformanceReport) which queries the data and metadata (which also 
contains a runtime duration for every module invocation) of all new data named graphs to 
generate a performance report. The performance report is written to the console and also to 
the file system (to folder fileoutput/report/ associated with module report). The perfomance 
report is also written as CSV to fileoutput/report/aggregated_report_1.csv and in non-
aggregated form to fileoutput/report/report_1.csv. Executing the report module multiple 
times would produce multiple version of these files, e.g., report_2.csv, report_3.csv, etc. 
With the number being the module's current sequence number. This also demonstrates how 
file imports and exports (which are central for integrating external modules, like ML 
modules, into the KG system, loosely coupled via the file system) are aligned with our 
versioning approach.  

The modules are all implemented as concrete subclasses of AbstractInternalModule and implement 
interface InternalModule. The package also comprises concrete subclasses/implementations of 
AbstractSingleRunModule/SinglerunModule and AbstractExternalModule/ExternalModule but only 
as stubs without proper functionality just to check whether the metadata management works as 
expected also for these types of modules.  

By running KGSystem1, which just consists of a main method, an instance of KGModuleSystem is 
created and the above modules are registered. Via the KGModuleSystem instance a connection with 
the KG Server is established and all the previous contents are deleted. Then the registered modules 
are executed in the order (adsb, qadsb, adsbP1, adsbP2, pairs) 50 times followed by one execution of 
module report.  

3.8.1 Results of Initial Performance Measurements 

To get first insights into the approach’s performance characteristics we conducted initial 
performance measurements. The following performance report was generated by running 
KGSystem1 (as described above) as KG Manager and Fuseki with a TDB database as KG Server on the 
same machine (a HP EliteBook 850 G2 with an Intel® Core™ i7-5600U CPU @ 2.60 GHz, 2 kernels, 4 
logical processors running with 16 GB of physical RAM, running Windows 10 Pro). The performance 
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report shows the execution time in ms per module invocation and the number of RDF triples in the 
new data named graph (minimum, maximum, and average of the 50 runs).  

adsb,  

259 ms (min), 825 ms (max), 375 ms (avg),  

382 triples (min), 485 triples (max), 404 triples (avg). 

qadsb,  

114 ms (min), 505 ms (max), 152 ms (avg),  

6 triples (min), 6 triples (max), 6 triples (avg). 

adsbP1,  

157 ms (min), 348 ms (max), 217 ms (avg),  

6 triples (min), 72 triples (max), 34 triples (avg). 

adsbP2,  

127 ms (min), 355 ms (max), 161 ms (avg), 6 triples (min),  

44 triples (max), 7 triples (avg). 

 

pairs,  

332 ms (min), 1239 ms (max), 449 ms (avg),  

1077 triples (min), 1777 triples (max), 1234 triples (avg). 

   

module minTime maxTime avgTime minCount maxCount avgCount 

qadsb 114 505 152 6 6 6 

adsbP1 157 348 217 6 72 34 

adsbP2 127 355 161 6 44 7 

adsb 259 825 375 382 485 404 

pairs 332 1239 449 1077 1777 1234 

 

3.8.2 Console Application for Interactive or Scripted KG Sessions  

Class KGModuleSystem also provides a console application to facilitate interactive KGModuleSystem 
sessions where modules are invoked via textual commands. The following shows a sample interactive 
session (with user inputs in green – which could alternatively be provided by a text file). 

Your commands: > run adsb 

adsb reads: http://aisa-project.eu/graphs/g0 

adsb - Request time: 1612894440 

> run adsb 

adsb reads: http://aisa-project.eu/graphs/g1 

adsb - Request time: 1612894460 

> run pairs 

pairs: 342 distances between flights inserted 

> run adsb 

adsb reads: http://aisa-project.eu/graphs/g2 

adsb - Request time: 1612894470 

> run pairs 

pairs: 190 distances between flights inserted 

> run pairs 
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pairs: 0 distances between flights inserted 

> run report 

adsb, 1, 545 ms, 396 triples. 

adsb, 2, 303 ms, 396 triples. 

adsb, 3, 290 ms, 417 triples. 

pairs, 1, 582 ms, 2400 triples. 

pairs, 2, 538 ms, 1336 triples. 

pairs, 3, 245 ms, 6 triples. 

adsb, 290 ms (min), 545 ms (max), 379 ms (avg), 396 triples (min), 

417 triples (max), 403 triples (avg). 

pairs, 245 ms (min), 582 ms (max), 455 ms (avg), 6 triples (min), 

2400 triples (max), 1247 triples (avg). 

> exit 

Bye... 
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Appendix A Glossary 
 

Abbreviation Term 

ADS-B Automatic Dependent Surveillance-Broadcast 

AI Artificial Intelligence 

AIXM Aeronautical Information Exchange Model 

ATC Air Traffic Control 

ATCO Air Traffic Control Officer 

ATM Air Traffic Management 

FIXM Flight Information Exchange Model 

ICAO International Civil Aviation Organization 

JPL a Java/Prolog Interface 

ML Machine Learning 

KG Knowledge graph 

PoC Proof-of-Concept 

RDF Resource Description Framework 

RDF/XML a syntax to express an RDF as an XML document  

RDFS Resource Description Framework Schema 

SA Situational Awareness 

SHACL Shapes Constraint Language 

SPARQL SPARQL Protocol and RDF Query Language 

SWIM System-wide Information Management 

Turtle Terse RDF Triple Language 

UML Unified Modeling Language 

XMI XML Metadata Interchange 

XQuery XML Query Language 

  

  

  

Table 1 Table of acronyms 
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