

Proof-of-concept
KG system

 Deliverable ID: D4.1

 Dissemination Level: PU

 Project Acronym: AISA

 Grant: 892618
 Call: H2020-SESAR-2019-2
 Topic: SESAR-ER4-01-2019
 Consortium Coordinator: FTTS
 Edition date: 28 February 2021
 Edition: 00.01.00
 Template Edition: 02.00.02

EXPLORATORY RESEARCH
Ref. Ares(2021)1865255 - 15/03/2021

2

Authoring & Approval

Authors of the document

Name/Beneficiary Position/Title Date

Bernd Neumayr/JKU University Assistant (Senior PostDoc) 12 March 2021

Reviewers internal to the project

Name/Beneficiary Position/Title Date

Michael Schrefl/JKU Full Professor 12 March 2021

Tomislav Radišić/FTTS Assistant Professor 13 March 2021

Approved for submission to the SJU By - Representatives of beneficiaries involved in the project

Name/Beneficiary Position/Title Date

Tomislav Radišić/FTTS Project Coordinator

Rejected By - Representatives of beneficiaries involved in the project

Name/Beneficiary Position/Title Date

PROOF-OF-CONCEPT
KG SYSTEM

3

Document History

Edition Date Status Author Justification

00.00.01 28/02/2021 First version Bernd Neumayr New document

00.00.02 11/03/2021 First full version Bernd Neumayr Completed Sect. 3

00.00.03 11/03/2021 First revision Bernd Neumayr Updated Figures

00.00.04 12/03/2021 Final draft Bernd Neumayr Internal Rev. Comments

00.01.00 13/03/2021 First Issue Bernd Neumayr First Issue

PROOF-OF-CONCEPT
KG SYSTEM

4

Copyright Statement

© 2020 AISA Consortium.

All rights reserved. Licensed to the SESAR Joint Undertaking under conditions.

AISA
AI SITUATIONAL AWARENESS FOUNDATION FOR ADVANCING AUTOMATION

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under
grant agreement No 892618 under European Union’s Horizon 2020 research and innovation
programme.

Abstract

The AISA Project-level Concept of Operations set out in Chapter 5 of Deliverable 2.1 has at its center
the ATC Knowledge Graph (KG). In this deliverable (D 4.1) we describe an architecture for the data
and metadata in such a KG and for the software components for incrementally processing and
querying the data and metadata in the KG. The Proof-of-Concept KG System exemplifies this
architecture and has the purpose of guiding further developments in WP 4 and WP 5. The proposed
architecture of a KG system facilitates SPARQL Queries Capturing Monitoring Tasks based on
traffic/airspace data converted to RDF. It further accomodates the integration with other
components such as the Reasoning Engine in Prolog developed in Task 4.2 and Machine Learning
Modules developed in WP3. The main goal is to develop and assess the concept of the artificial SA
based on a KG from a functional perspective rather than to consider requirements of a real-time life
system. In this deliverable we also describe the UML-to-RDFS/SHACL mapper which facilitates the
transformation from information exchange models such as AIXM and FIXM modeled in UML to KG
schemas in RDFS and SHACL.

PROOF-OF-CONCEPT
KG SYSTEM

5

1 Table of Contents

Executive Summary ... 8

1 Introduction ... 10

1.1 Definitions... 10

1.2 Purpose of the document... 10

1.3 Structure and methodology ... 10

1.4 Relations to other documents .. 11

2 UML to RDFS/SHACL Mapper ... 12

2.1 Introduction .. 12
2.1.1 Semantic Requirements .. 12
2.1.2 Syntactic Requirements .. 12
2.1.3 Architecture .. 12
2.1.4 How-to: Running the Mapper ... 13
2.1.5 How-to: Transforming generated RDFS/SHACL documents to Turtle format 13
2.1.6 How-to: Validating data graphs... 14
2.1.7 Performance .. 14

2.2 Configuration File .. 14
2.2.1 Structure of the configuration file ... 14
2.2.2 How-to: Writing a configuration file ... 15
2.2.3 How-to: Extensions ... 15

2.3 Mapper ... 16
2.3.1 mapper.xq ... 16
2.3.2 extractor.xq ... 16
2.3.3 Plugins ... 17

2.4 RDFS/SHACL Document ... 26

3 Proof-of-Concept KG System ... 27

3.1 Requirements and Setting .. 27

3.2 System Components and Deployment .. 29
3.2.1 Configuring Apache Jena Fuseki .. 30

3.3 KG System Architecture ... 30
3.3.1 Logical Time vs Physical Time .. 31
3.3.2 Metadata Management .. 32
3.3.3 Selecting collections of Named Graphs of Modules.. 32
3.3.4 Deleting outdated new data named graphs.. 32

3.4 Java Library ... 33

3.5 SPARQL Preprocessing ... 34

3.6 RDF Schema (RDFS) Reasoning ... 36

PROOF-OF-CONCEPT
KG SYSTEM

6

3.7 SHACL Validation ... 38

3.8 Proof-of-Concept KG System .. 38
3.8.1 Results of Initial Performance Measurements .. 39
3.8.2 Console Application for Interactive or Scripted KG Sessions .. 40

Appendix A Glossary .. 42

PROOF-OF-CONCEPT
KG SYSTEM

7

List of Tables

Table 1 Results of Preliminary Performance Studies for the AISA XMI Mapper 14

List of Figures

Figure 1 Architecture of the UML to RDFS/SHACL Mapper .. 13

Figure 2 Components of the KG System .. 29

Figure 3 Conceptual structural model in UML of the KG and the KG Module System 31

PROOF-OF-CONCEPT
KG SYSTEM

8

Executive Summary

This document describes deliverable D4.1 which is specified as a Demonstrator. The actual
deliverable consists of two parts delivered as GitHub repositories which will be made available open
source. The first part is the UML-to-RDFS/SHACL mapper (also referred to as AISA XMI mapper). The
second part is the Proof-of-Concept KG system (also referred to as AISA KG system).

The UML-to-RDFS/SHACL mapper has already been used intensively in Task 4.3 to generate major
parts of the KG schema from existing information exchange models. The generated KG schema
consists of a vocabulary in RDF Schema (RDFS) and a set of structural constraints in the Shapes
Constraint Language (SHACL). The generated SHACL constraints have been used, in turn, to validate
the RDF data created manually in Task 4.3. The UML-to-RDFS/SHACL mapper is implemented in
XQuery, it takes as input an UML class diagram represented in XMI (XML Model Interchange format)
and a configuration file specifying which parts of the UML class diagram should be mapped, and
produces as output an RDFS/SHACL document in RDF/XML format. To accommodate specifities of
different information exchange models (e.g., different sets of UML stereotypes) the mapper comes
with a plug-in architecture and currently has a FIXM plug-in and an AIXM plug-in.

Before discussing the proof-of-concept KG system let us recall the core purpose of the ATC
knowledge graph in the project-level concept of operations, which is to facilitate SPARQL Queries
Capturing Monitoring Tasks. In principle, for this purpose, it would suffice to transform and load all
the relevant data into the KG and provide a SPARQL endpoint to pose the queries. This would,
however, result in a nightmare regarding development and maintenance of the queries (with most
queries being extremely complex and sharing large common parts) and regarding performance of
query execution (with every query executed from scratch). Similar challenges exist for traditional
databases where they are solved by materialized views (making queries and their results reuseable
for other query executions), and incremental view maintenance (avoiding the need to recalculate
query results once new data arrives). These proposed architecture will apply these concepts to KGs.
From the perspective of Situational Awareness (SA) assessment, the KG will serve as memory of a
history sensitive self-aware system, and, integrating with ML Modules, as memory of a predictive
system. From this perspective it is clear that the data and metadata in the KG have to be fully
versioned, that is, all historical states of the KG have to be queryable or at least reconstructible.

The Proof-of-Concept KG system demonstrates the KG system architecture described in this
document. By KG system we refer to (1) the KG (in AISA: an RDF dataset), (2) the application-
independent software components for storing, processing and querying the KG (in AISA: Apache Jena
including Fuseki and TDB), (3) a set of application-specific engines (in AISA: a set of Java programs
making heavy use of SPARQL which are responsible for loading, querying, inserting, processing,
importing and exporting data and metadata in the KG) and (4) a control component (in AISA: a Java
program which invokes the different engines and provides a command-line interface to allow users
to invoke engines and to facilitate the scripting of experiments). Engines are invoked via the central
control component in a serialized/synchronous manner. Components external to the KG system, like
ML modules, are loosely coupled via file export and file import and run asynchronously; they are
integrated into the KG system in a serialized/synchronous manner each by a specific engine which
takes care, by separate invocations, of (1) the export from the KG of the input data for the external
module and (2) the import to the KG of the output data from the external module. Rule-based
reasoning in Prolog (to be discussed in D 4.2) will be integrated seamlessly into the system by
Prolog-based engines, i.e., Java programs that call SWI-Prolog via the Java/Prolog interface JPL.

PROOF-OF-CONCEPT
KG SYSTEM

9

Intended Audience

This document is intended for use by those employed within SESAR Joint Undertaking and by the
experts from the ATM community, other professionals working on research and development in the
fields of data and knowledge engineering and information management, those employed in
EUROCONTROL and the ANSPs who might take advantage of the proposed methods. The
components described in this document should act as central components of the AI Situational
Awareness System developed in the project and act as technical basis for further developments at a
later stage of the AISA project. In particular, this document will be useful to partners involved in the
project as a basis for further development in WP4 and WP5.

PROOF-OF-CONCEPT
KG SYSTEM

10

1 Introduction

In Task 4.1 we have developed (1) the UML-to-RDFS/SHACL mapper and (2) a KG system architecture
and proof-of-concept prototype KG system geared towards the AISA project-level Concept of
Operations. This document describes these developments.

1.1 Definitions

In the technical scope of this deliverable we give very specific technical meaning to otherwise broad
terms.

Knowledge Graph (KG). A knowledge graph is a persistent RDF dataset, that is, a set of named RDF
graphs comprising data and metadata.

KG System. By KG system we refer to (1) the KG, (2) the application-independent software
components for storing, processing and querying the KG, (3) a set of application-specific engines
which are responsible for loading, querying, inserting, processing, importing and exporting data and
metadata in the KG and (4) a control component which invokes the different engines.

The complete list of acronyms and definitions of the terms mentioned in this paper can be found at
the end of the document in the Appendix A – Glossary.

1.2 Purpose of the document

The purpose of this document is to describe the work undertaken in Task 4.1 to develop building
blocks for the implementation of a system that serves to assess the concept of AI situational
awareness. The current version sets the way for the forthcoming developments of WP 4 as well as
Task 5.1 in the AISA project. The KG system architecture proposed and the software described in this
document may evolve together with evolving requirements in the remainder of WP4 and Task 5.1.

1.3 Structure and methodology

This document describes the software developed in Task 4.1 (UML to RDFS/SHACL Mapper and
Proof-of-Concept KG system). Section 2 describes the UML-to-RDFS/SHACL mapper and how it is
applied. Section 3 proposes a KG system architecture for SA systems, describes a small Proof-of-
Concept KG system together with a compact Java library, i.e., set of (abstract) classes and interfaces,
facilitating the development of a KG system following the proposed architecture.

Appendices at the end of this document contain a glossary of all terms and acronyms.

PROOF-OF-CONCEPT
KG SYSTEM

11

1.4 Relations to other documents

The document is linked to project deliverable:

• AISA D2.1: Concept of Operations for AI Situational Awareness

• AISA D2.2: Requirements for Automation of Monitoring Tasks via AI SA

PROOF-OF-CONCEPT
KG SYSTEM

12

2 UML to RDFS/SHACL Mapper

2.1 Introduction

The UML to RDFS/SHACL Mapper (alternatively referred to as AISA-XMI-Mapper) maps selected
classes of UML class diagrams to RDF Schema (RDFS) and Shape Constraint Language (SHACL)
documents. RDFS defines the vocabulary of the domain which is described by the UML class
diagrams, i.e. classes and class hierarchies. SHACL defines structural constraints of the domain. The
mapper is created with the aim of mapping aeronautical UML models (AIXM 5.1.1., FIXM 3.0.1.
SESAR) which adhere to a specific modelling style. Therefore, models provided to the mapper must
fulfill certain semantic and syntactic requirements.

2.1.1 Semantic Requirements

The semantic requirements capture the modeling style followed by the aeronautical UML models.
Other UML models mapped must also adhere to these.

• Requirement 1: Class names must be unique within a model (AIXM, FIXM, ...). There can be a
UML class called "Route" in an AIXM based model and an FIXM based model but there must
not be two different UML classes called "Route" in one model even if they are in different
packages.

• Requirement 2: Models contain only directed associations.

• Requirement 3: Role names (at the target) of associations with the same source class must
be unique within the source class.

• Requirement 4: Role names must exist, if there is more than one association between a
source and a target class. If there is only one association and no role name provided, the role
name is constructed using the name of the target class.

Requirement 1 is validated by the mapper and, if violated, throws an error. Requirements 2-4 are
assumed to be UML model requirements and are not validated by the mapper.

2.1.2 Syntactic Requirements

• Models to-be mapped must be exported to a single XMI file (version 2.1) by the Enterprise
Architect (version 14.1).

2.1.3 Architecture

The architecture of the mapper is shown in the figure below. A configuration file refers to XMI files
and keeps lists of selected UML classes. A single configuration file is provided as input to the mapper.
Based on the configuration file, selected subsets of models are extracted by the extractor module.
Extracted subsets of models are mapped by model-specific plugins to RDFS/SHACL documents
provided as RDF/XML files.

PROOF-OF-CONCEPT
KG SYSTEM

13

Figure 1 Architecture of the UML to RDFS/SHACL Mapper

2.1.4 How-to: Running the Mapper

There are different ways to run the mapper. Among them the following two ways have been applied
in the project so far:

• Approach 1: Install a W3C compliant XQuery processor (e.g. BaseX) and run the file
mapper.xq:

o Using the BaseX command line tool:
basex -b$config="<locationOfTheConfigurationFile.xml>" mapper.xq

o Or using the BaseX GUI and manually binding the location of the configuration file to
the config variable.

• Approach 2: Write a Java program which runs mapper.xq. This approach is demonstrated by
RunMapper.java and has been applied in Task 4.3.

2.1.5 How-to: Transforming generated RDFS/SHACL documents to Turtle
format

The generated RDFS/SHACL documents are in RDF/XML format which makes them rather difficult to
read for humans. The Turtle RDF syntax is much easier to read and it is easy to transform from
RDF/XML to Turtle. One approach is to use functionality from Apache Jena to do this transformation
from Java. This approach is demonstrated in TransformXML2TTL.java and has been applied in Task
4.3.

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/_sampleJavaProgram/SampleProgram/src/main/java/at/jku/dke/samples/RunMapper.java
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/_sampleJavaProgram/SampleProgram/src/main/java/at/jku/dke/samples/TransformXML2TTL.java

PROOF-OF-CONCEPT
KG SYSTEM

14

2.1.6 How-to: Validating data graphs

There are a different ways to validate data with generated RDFS/SHACL documents. One approach is
to invoke functionality provided by Apache Jena for RDFS reasoning and SHACL validation from Java.
This approach is demonstrated in ValidationWithSHACL.java .

When validating RDF data against generated SHACL documents one needs to be careful to make sure
that in the data the same namespaces are used as in the generated RDFS/SHACL document. One
needs to be aware that the generated RDFS/SHACL schemas use namespace http://www.aisa-
project.eu/vocabulary/aixm_5-1-1# for AIXM, http://www.aisa-project.eu/vocabulary/fixm_3-0-
1_sesar# for FIXM, and http://www.aisa-project.eu/xquery/plain# for plain models.

2.1.7 Performance

Performance of the AISA XMI Mapper is not important in AISA because the schemas are typically only
mapped once in the beginning. Hence, the XQuery code was not written to optimize performance.
We have nonetheless conducted some preliminary performance studies to get a feeling for the
mapper's performance characteristics. The performance studies have been conducted with a Lenovo
Thinkpad T470p using the provided configuration files (see https://github.com/jku-win-dke/AISA-
XMI-Mapper/blob/main/configurations/) and running mapper.xq with the BaseX GUI.

Execution AIXM_DONLON.xml AIXM_COCESNA.xml FIXM_EDDF-VHHH.xml

 1 32 821 ms 102 323 ms 12 555 ms

 2 34 069 ms 102 758 ms 12 336 ms

 3 33 137 ms 103 382 ms 12 524 ms

 4 33 875 ms 103 906 ms 12 333 ms

 5 34 443 ms 104 194 ms 12 335 ms

Average 33 669ms 103 313 ms 12 417 ms

Table 1 Results of Preliminary Performance Studies for the AISA XMI Mapper

2.2 Configuration File

2.2.1 Structure of the configuration file

In configuration files a set of UML classes of different models to-be mapped can be specified. The
following attributes (or parameters) must be provided:

• input: The path to the model's XMI file.

• type: The type of the model determines the plugin used for mapping, i.e. type can be
"aixm_5-1-1", "fixm_3-0-1_sesar" or "plain".

• output: The path to the to-be generated RDFS/SHACL document.

• connectorLevel: The number i of the connector level indicates that UML classes reachable by
at most i connection step from a specified UML class are also to be included in the mapping.

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/_sampleJavaProgram/SampleProgram/src/main/java/at/jku/dke/samples/ValidationWithSHACL.java

PROOF-OF-CONCEPT
KG SYSTEM

15

The connectorLevel can be "1", "2", ..., "n". Value n stands for possibly infinite number of
traversals. It is recommended to use "n" to include not visible classes (especially from
stereotype "choice" in AIXM and FIXM) of a data graph. However, using connectorLevel "n"
decreases performance and increases the size of the schema eventually including classes
which are not required. If "n" is not used, then the connector level should be choosen in a
way that it resolves necessary datatypes, e.g. in AIXM a minimum of connector level 4 is
recommended.

The example below shows that the the classes "AirportHeliport" and "City" of the model at
"input/AIXM_5.1.1.xmi" should be mapped by the plugin with the name "aixm_5-1-1" and using a
connector level of "n".

 <configuration>

 <selection>

 <models>

 <model input="input/AIXM_5.1.1.xmi" type="aixm_5-1-1"

output="output/AIXM_example.xml">

 <classes connectorLevel="n">

 <class>AirportHeliport</class>

 <class>City</class>

 </classes>

 </model>

 <model ... >

 ...

 </model>

 </models>

 </selection>

 </configuration>

2.2.2 How-to: Writing a configuration file

In order to determine the UML classes to be selected, only consider UML classes from the
namespace of the model. In addition, TimeSlice classes in AIXM cannot be selected because they are
not part of the AIXM UML class diagrams, instead they are generated by the mapper if the parent
feature (i.e. the feature class to which the feature timeslice class belongs) is selected. As an example,
see the decisions for the configuration of the Donlon airport example.

Additional configuration files can be maintained without changing existing ones. However, the
mapper can only consider one configuration file at a time. Make sure that the reference to the to-be
used configuration file is correctly set in the mapper.xq (variable $config).

2.2.3 How-to: Extensions

In case the mapper should be further configurable by attributes or connections of classes which
should only be mapped or which should not be mapped, this information should be provided as an
inclusion or exclusion list in the configuration file. As an example:

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/configurations/AIXM_DONLON.xml
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/_exampleData/AIXM_DONLON.ttl

PROOF-OF-CONCEPT
KG SYSTEM

16

...

 <classes>

 <class name="AirportHeliport">

 <attributes>

 <attribute>name</attribute>

 </attributes>

 <connectors>

 <connector>serves</connector>

 </connectors>

 </class>

 ...

 </classes>

...

The extractor module needs to be adapted accordingly. Furthermore, one must consider this
configuration in the mapping plugins. Simply check while mapping attributes or connectors of an
UML class if this attribute or connector is part of the list in the configuration file.

2.3 Mapper

2.3.1 mapper.xq

The mapper.xq is the main module of the mapper. The variable $config refering to the location of the
configuration file needs to be set externally. For each model specified in the configuration file, it
delegates the extraction process to the extractor.xq. After the extraction the mapper delegates the
mapping process to the corresponding plugin, and finally writes the result to a file.

2.3.2 extractor.xq

The extractor.xq extracts a subset of UML classes and connections from an XMI file based on the
configuration file. The following steps are performed:

1. Extracting the selected UML classes
2. Extracting of corresponding UML classes and connections (recursive):

1. Extract outgoing connections from the set of selected and extracted UML classes
2. Extract UML classes with an ingoing connection from 2.1.
3. Extract UML classes which are association classes of connections from 2.1.
4. Extract UML classes which are the range of attributes of selected and extracted UML

classes
5. If connectorLevel="n":

1. If the extracted model subset increased in size, then add another cycle of
extraction.

2. Otherwise, return the extracted model subset.
6. Otherwise:

1. If the extracted model subset increased in size and connectorLevel > 1, then
add another cycle of extraction and reduce the connectorLevel by 1.

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/mapper.xq
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/extractor.xq

PROOF-OF-CONCEPT
KG SYSTEM

17

2. Otherwise, return the extracted model subset.

In the end, the extracted model subset is returned to the mapper.xq.

2.3.3 Plugins

Plugins are implementations of different models' mapping semantics. Each plugin is a XQuery module
with the task to map a given model subset to an RDFS/SHACL document. We use different plugins for
different models because there is no one fits all mapping approach. For example, stereotypes or
attributes may have different meanings or may be used differently in different models. By default,
the following plugins are available:

1. utilities.xq provides basic functionality for plugins
2. aixm_5-1-1.xq for AIXM 5.1.1
3. fixm_3-0-1_sesar.xq for FIXM 3.0.1 SESAR
4. plain.xq for plain UML models (no consideration of stereotypes)

The mapper can simply be extended by adding new plugins as XQuery modules to the plugin folder
and by adding them to the delegation of the mapping process in the mapper.xq (variable
$mappedModel). A new plugin may be useful, if a model needs to be mapped that uses stereotypes
differently than in previous models. In addition, a new plugin may also be useful, if an existing plugin
needs to be adapated, e.g. different namespaces or updating the meaning of a stereotype.

2.3.3.1 utilities.xq

The utilities.xq provides basic functionality used in the plugins. It provides two functions:

1. Transform a sequence of elements to an RDF/XML list
2. Find super classes of an class in a given model subset with two options:

1. Super elements are not from a certain stereotype
2. Call this function recursively to find all super classes of a class

2.3.3.2 plain.xq

The plain.xq targets models which are not based AIXM and FIXM and do not use stereotypes.

2.3.3.2.1 Mapping of UML classes

For each UML class from the extracted subset, a SHACL shape / RDFS class is generated. Super classes
of a UML class are mapped into rdfs:subClassOf and sh:and. Attributes are mapped into optional
property shapes, while connections are mapped into property shapes with the cardinality of the
relationship being represented in the sh:minCount and sh:maxCount. If a UML class is an association
class, connections are resolved such that the source class has a property shape which targets the
association class, while the association class has a property shape which targets the target class.

2.3.3.3 aixm_5-1-1.xq

The aixm_5-1-1.xq targets models which are based on AIXM 5.1.1. First, basic elements are added
and then, element by element of the extracted model subset is mapped.

https://github.com/jku-win-dke/AISA-XMI-Mapper/tree/main/plugins
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/plugins/utilities.xq
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/plugins/plain.xq
https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/plugins/aixm_5-1-1.xq
http://www.aixm.aero/page/aixm-511-specification

PROOF-OF-CONCEPT
KG SYSTEM

18

2.3.3.3.1 Basic Elements for AIXM features

If the extracted model subset contains an element with stereotype "feature", the following basic
classes are added to the result:

An empty SHACL shape named "aixm:AIXMFeature" which could be extended by general AIXM
feature properties. This shape represents the abstract AIXMFeature class. Its identifier attribute is
not mapped into a property shape because the identifier of features is used as resource identifier
(IRI).

1. aixm:AIXMFeature a sh:NodeShape .

A SHACL shape named "aixm:AIXMTimeSlice" which keeps general and mandatory attributes of
feature time slices, i.e. gml:validTime, aixm:interpretation, aixm:sequenceNumber,
aixm:correctionNumber.

2. aixm:AIXMTimeSlice
3. a sh:NodeShape ;
4. sh:property [
5. sh:maxCount 1 ;

6. sh:minCount 1 ;

7. sh:node aixm:NoNumberType ;

8. sh:path aixm:correctionNumber

9.] ;
10. sh:property [

11. sh:maxCount 1 ;

12. sh:minCount 1 ;

13. sh:node aixm:NoNumberType ;

14. sh:path aixm:sequenceNumber

15.] ;

16. sh:property [

17. sh:maxCount 1 ;

18. sh:minCount 1 ;

19. sh:node aixm:TimeSliceInterpretationType ;

20. sh:path aixm:interpretation

21.] ;

22. sh:property [

23. sh:class gml:TimePeriod ;

24. sh:maxCount 1 ;

25. sh:minCount 1 ;

26. sh:path gml:validTime

27.] .

A SHACL shape and RDFS class named "gml:TimePeriod" (type of gml:validTime) which keeps a
gml:beginPosition and a gml:endPosition.

28. gml:TimePeriod

29. a rdfs:Class , sh:NodeShape ;

30. sh:property [

31. sh:maxCount 1 ;

32. sh:minCount 1 ;

33. sh:node gml:TimePrimitive ;

PROOF-OF-CONCEPT
KG SYSTEM

19

34. sh:path gml:endPosition

35.] ;

36. sh:property [

37. sh:maxCount 1 ;

38. sh:minCount 1 ;

39. sh:node gml:TimePrimitive ;

40. sh:path gml:beginPosition

41.] .

A SHACL shape named "gml:TimePrimitive" (type of gml:beginPosition and gml:endPosition) which
can have xsd:dateTime as rdf:value or can be a gml:indeterminatePosition.

42. gml:TimePrimitive

43. a sh:NodeShape ;

44. sh:property [

45. sh:datatype xsd:string ;

46. sh:maxCount 1 ;

47. sh:path gml:indeterminatePosition ;

48. sh:in ("after" "before" "now" "unknown")

49.] ;

50. sh:property [

51. sh:datatype xsd:dateTime ;

52. sh:maxCount 1 ;

53. sh:path rdf:value

54.] ;

55. sh:xone (

56. [

57. sh:property [

58. sh:minCount 1 ;

59. sh:path rdf:value

60.]

61.]

62. [

63. sh:property [

64. sh:minCount 1 ;

65. sh:path gml:indeterminatePosition

66.]

67.]

68.) .

A SHACL shape named "aixm:TimeSliceInterpretationType" (type of aixm:interpretation) which can
have the rdf:value "BASELINE" or "TEMPDELTA".

69. aixm:TimeSliceInterpretationType

70. a sh:NodeShape ;

71. sh:property [

72. sh:in ("BASELINE" "TEMPDELTA") ;

73. sh:maxCount 1 ;

74. sh:minCount 1 ;

75. sh:path rdf:value

76.] .

A SHACL shape named "aixm:NoNumberType" (type of aixm:sequenceNumber and
aixm:correctionNumber) which has an xsd:unsignedInt as rdf:value.

PROOF-OF-CONCEPT
KG SYSTEM

20

77. aixm:NoNumberType

78. a sh:NodeShape ;

79. sh:property [

80. sh:datatype xsd:unsignedInt ;

81. sh:maxCount 1 ;

82. sh:minCount 1 ;

83. sh:path rdf:value

84.] .

These basic elements are mandatory for AIXM features and not modelled accordingly in the AIXM
5.1.1 UML class diagrams, therefore, they are added manually. Other GML constructs like gml:pos
inherited through gml:Point are also not part of the AIXM 5.1.1 UML class diagrams. A generated
AIXM RDFS/SHACL document could be combined with a GML RDFS/SHACL document for a complete
validation of the data.

2.3.3.3.2 Basic Mapping Methods

Some mapping methods in AIXM are used in multiple cases, including mapping of attributes,
connectors and association classes:

Attributes of a UML class are mapped into optional (i.e. sh:minCount 0) property shapes with the
attribute type being the target node. The name of the attribute is used as sh:path. Example attribute
aixm:name of aixm:AirportHeliport:

1. aixm:AirportHeliportTimeSlice
2. sh:property [
3. sh:path aixm:name ;

4. sh:node aixm:TextNameType ;

5. sh:maxCount 1 ;

6.] .

Connections to other UML classes are mapped into property shapes with the sh:minCount and
sh:maxCount representing the cardinality of the relationship. The target class is specified by the
sh:class constraint. If a role name is provided, this name is used for sh:path. Otherwise, the sh:path is
the combination of "the" plus the target class name. There is an exception of mapping connections:
association classes. If an association class for a connection exists, the property of the source UML
class targets the association class. Furthermore, the association class has a property shape which
targets the connection's target class. Example of aixm:AirportHeliport with a connection to the class
aixm:City and a connection to the class aixm:OrganisationAuthority with an association class with the
association class aixm:AirportHeliportResponsibilityOrganisation:

7. aixm:AirportHeliportTimeSlice
8. sh:property [
9. sh:class aixm:City ;

10. sh:path aixm:servedCity

11.] ;

12. sh:property [

13. sh:class

aixm:AirportHeliportResponsibilityOrganisation ;

14. sh:maxCount 1 ;

15. sh:path aixm:responsibleOrganisation

16.] .

PROOF-OF-CONCEPT
KG SYSTEM

21

A UML class can be an association class for a connection between two other classes. As already
explained above, a property shape is added to an association class targeting the connection's target
class. The sh:path is always the combination of "the" plus the target class name since the role name
is already used by the source class. Example of the connection between aixm:AirportHeliport and
aixm:OrganisationAuthority with aixm:AirportHeliportResponsibilityOrganisation as assocation class:

17. aixm:AirportHeliportResponsibilityOrganisation

18. sh:property [

19. sh:class aixm:OrganisationAuthority ;

20. sh:maxCount 1 ;

21. sh:minCount 1 ;

22. sh:path aixm:theOrganisationAuthority

23.] .

2.3.3.3.3 Mapping of UML classes

UML classes of AIXM 5.1.1 are mapped based on their stereotype:

Stereotype "feature": For each UML class with stereotype "feature" two SHACL shapes / RDFS classes
are generated. The first SHACL shape / RDFS class extends the aixm:AIXMFeature shape and has only
one property named aixm:timeSlice. The second SHACL shape / RDFS class extends the
aixm:AIXMTimeSlice shape and is named like the UML class with the phrase "TimeSlice" added at the
end. For each super class of the feature, a rdfs:subClassOf and sh:and statement are added to the
corresponding TimeSlice. Furthermore, the TimeSlice holds all attributes and connections of the
corresponding feature as property shapes. Therefore, the three basic methods explained above are
used. Example feature aixm:AirportHeliport with aixm:AirportHeliportTimeSlice:

1. aixm:AirportHeliport
2. a rdfs:Class , sh:NodeShape ;
3. sh:and (aixm:AIXMFeature) ;
4. sh:property [
5. sh:path aixm:timeSlice ;

6. sh:class aixm:AirportHeliportTimeSlice ;

7.] .
8. aixm:AirportHeliportTimeSlice
9. a rdfs:Class , sh:NodeShape ;
10. sh:and (aixm:AIXMTimeSlice) ;

11. sh:property [

12. sh:path aixm:name ;

13. sh:node aixm:TextNameType ;

14. sh:maxCount 1 ;

15.]

Stereotype "object": For each UML class with stereotype "object" a SHACL shape / RDFS class is
generated. Super classes and the three basic mapping methods are used exactly in the same way as
in UML classes with stereotype "feature". The only difference between features and objects is that
there are no added TimeSlice classes for objects. Example aixm:AirportHeliportUsage:

16. aixm:AirportHeliportUsage

17. a rdfs:Class , sh:NodeShape ;

18. rdfs:subClassOf aixm:UsageCondition ;

19. sh:and (aixm:UsageCondition) ;

PROOF-OF-CONCEPT
KG SYSTEM

22

20. sh:property [

21. sh:maxCount 1 ;

22. sh:node aixm:CodeOperationAirportHeliportType ;

23. sh:path aixm:operation

24.] .

Stereotype "CodeList": For each UML class with stereotype "CodeList" a SHACL shape is generated.
Its attribute names are allowed values and therefore mapped as a SHACL list into sh:in. If a super
class with stereotype "XSDsimpleType" exists, a SHACL datatype statement is added. Example
aixm:NilReasonEnumeration and aixm:UomDistanceVerticalType:

25. aixm:NilReasonEnumeration

26. a sh:NodeShape ;

27. sh:datatype xsd:string ;

28. sh:in ("inapplicable" "missing" "template" "unknown"

"withheld" "other") .

29. aixm:UomDistanceVerticalType

30. a sh:NodeShape ;

31. sh:datatype xsd:string ;

32. sh:in ("FT" "M" "FL" "SM" "OTHER") .

Stereotype "DataType": For each UML class with stereotype "DataType" a SHACL shape is generated.
For each super class with stereotype "DataType", a sh:and statement is added. The property shape
with sh:path rdf:value is always added to classes with stereotype "DataType". If a super class with
stereotype "XSDsimpleType" exists, a sh:datatype constraint is added for the rdf:value property
shape. If a super class with stereotype "CodeList" exists, a sh:node constraint is added for the
property shape of rdf:value. If an attribute with stereotype "XSDfacet" exists, it is added as
corresponding SHACL constraint (e.g. minLength) for the rdf:value property shape. If a super class
with stereotype "XSDsimpleType" exists, a SHACL datatype constraint is added for the rdf:value
property shape. All other attributes with stereotype not being "XSDfacet" are mapped according to
the basic mapping of attributes. If an attribute from type "NilReasonEnumeration" exists, a SHACL
exactly one (sh:xone) constraint is added, specifying that either a aixm:nilReason can occur or all
other properties and rdf:value. Classes with stereotype "DataType" are typically used in attributes
and not in connections, thus, the basic mapping methods 2 and 3 are not used. Example
aixm:ValDistanceVerticalType and its super class aixm:ValDistanceVerticalBaseType:

33. aixm:ValDistanceVerticalType

34. a sh:NodeShape ;

35. sh:and (aixm:ValDistanceVerticalBaseType) ;

36. sh:property [

37. sh:maxCount 1 ;

38. sh:node aixm:NilReasonEnumeration ;

39. sh:path aixm:nilReason

40.] ;

41. sh:property [

42. sh:maxCount 1 ;

43. sh:node aixm:UomDistanceVerticalType ;

44. sh:path aixm:uom

45.] ;

46. sh:property [

47. sh:maxCount 1 ;

48. sh:path rdf:value

PROOF-OF-CONCEPT
KG SYSTEM

23

49.] ;

50. sh:xone (

51. [

52. sh:property [

53. sh:minCount 1 ;

54. sh:path rdf:value

55.] ;

56. sh:property [

57. sh:path aixm:uom

58.]

59.]

60. [

61. sh:property [

62. sh:minCount 1 ;

63. sh:path aixm:nilReason

64.]

65.]

66.) .

67. aixm:ValDistanceVerticalBaseType

68. a sh:NodeShape ;

69. sh:property [

70. sh:datatype xsd:string ;

71. sh:maxCount 1 ;

72. sh:path rdf:value ;

73. sh:pattern "^((\\+|\\-){0,1}[0-9]{1,8}(\\.[0-

9]{1,4}){0,1})|UNL|GND|FLOOR|CEILING$"

74.] .

Stereotype "choice": For each UML class with stereotype "choice" a SHACL shape is generated. The
generated SHACL shape is only a link between a UML class and a choice between allowed classes.
Therefore, the SHACL shape of the choice class only contains the connections in a sh:xone (only one
connection is allowed). Example aixm:SignficantPoint:

75. aixm:SignificantPoint

76. a sh:NodeShape ;

77. sh:xone (

78. [sh:class aixm:AirportHeliport]

79. [sh:class aixm:TouchDownLiftOff]

80. [sh:class aixm:RunwayCentrelinePoint]

81. [sh:class aixm:Point]

82. [sh:class aixm:Navaid]

83. [sh:class aixm:DesignatedPoint]

84.) .

Stereotype "XSDsimpleType": No mapping. Super classes with this stereotype are used to derive
sh:datatype constraints in sub classes (with stereotype "DataType" or "CodeList").

Stereotype "XSDcomplexType": No mapping.

No stereotype: UML classes with no stereotypes are mapped the same as UML classes with
stereotype "object". Example gml:Point:

85. gml:Point a rdfs:Class , sh:NodeShape .

PROOF-OF-CONCEPT
KG SYSTEM

24

2.3.3.4 fixm_3-0-1_sesar.xq

The fixm_3-0-1_sesar.xq target models which are based on FIXM 3.0.1 SESAR.

2.3.3.4.1 Mapping of UML classes

UML classes of FIXM 3.0.1 SESAR are mapped based on their stereotype:

Stereotype "enumeration": For each UML class with stereotype "enumeration" a SHACL shape is
generated. It has a single mandatory (sh:minCount 1) property with the sh:path being fixm:uom or
rdf:value. In case the name of the UML class contains "Measure" the sh:path is fixm:uom, otherwise
it is rdf:value. The attribute names of the UML class are allowed values and therefore mapped as a
SHACL list into sh:in. Example fixm:AbrogationReasonCode and fixm:TemperatureMeasure:

1. fixm:AbrogationReasonCode
2. a sh:NodeShape ;
3. sh:property [
4. sh:in ("TFL" "ROUTE" "CANCELLATION" "DELAY" "HOLD") ;

5. sh:minCount 1 ;

6. sh:path rdf:value

7.] .
8. fixm:TemperatureMeasure
9. a sh:NodeShape ;
10. sh:property [

11. sh:in ("FARENHEIT" "CELSIUS" "KELVIN") ;

12. sh:minCount 1 ;

13. sh:path fixm:uom

14.] .

Stereotype "choice": For each UML class with stereotype "choice" a SHACL shape is generated. There
are two different cases: (1) a choice class is used as attribute or (2) a choice class is used via
connections. In case (1) the generated SHACL shape is only a link between a UML class and a choice
between allowed attributes or connected classes. Therefore, the SHACL shape of the choice class
only contains the attributes and connections in a sh:xone (only one attribute or connection is
allowed). In case (2) the generated SHACL shape is also an RDFS class. It also provides the choice
between attributes and connections in a sh:xone but including their paths and maxCount constraint.
Example fixm:PersonOrOrganization (case 1) and fixm:AircraftType (case 2):

15. fixm:PersonOrOrganization

16. a sh:NodeShape ;

17. sh:xone (

18. [sh:class fixm:Organization]

19. [sh:class fixm:Person]

20.) .

21. fixm:AircraftType

22. a rdfs:Class , sh:NodeShape ;

23. sh:xone (

24. [

25. sh:property [

26. sh:maxCount 1 ;

27. sh:minCount 1 ;

28. sh:node fixm:IcaoAircraftIdentifier ;

29. sh:path fixm:icaoModelIdentifier

30.]

https://github.com/jku-win-dke/AISA-XMI-Mapper/blob/main/plugins/fixm_3-0-1_sesar.xq
https://www.fixm.aero/release.pl?rel=SESAR_Ext-1.0

PROOF-OF-CONCEPT
KG SYSTEM

25

31.]

32. [

33. sh:property [

34. sh:maxCount 1 ;

35. sh:minCount 1 ;

36. sh:node fixm:FreeText ;

37. sh:path fixm:otherModelData

38.]

39.]

40.) .

No stereotype: For each UML class with no stereotype a SHACL shape is generated. If a UML class or
one of its super classes are not based on an XSD datatype, it is also an RDFS class with its super
classes as rdfs:subClassOf Triple added. In every case, super classes are added as sh:and statements.
In case, there is an attribute called "uom", an sh:and statements needs to include the SHACL shape of
that attribute. If the UML class (or one of its super classes) is connected to an XSD datatype, a SHACL
property shape with sh:path rdf:value is added (together with its constraints and datatype).
Attributes of classes are mapped into optional property shapes. In case the type of an attribute is
one of a few possible XSD datatypes, the attribute's property shape targets a blank node shape with
a single property shape that has the rdf:value as sh:path. The blank node shape is necessary to keep
the structure of instance data consistent. In all other cases, attributes are simply mapped into
optional property shapes. Connections of a UML class are also mapped into property shapes.
Example attribute fixm:topOfClimb with an XSD datatype in fixm:TrajectoryPointRole, and attribute
fixm:aircraftColours as well as connection fixm:aircraftType in fixm:Aircraft:

41. fixm:TrajectoryPointRole

42. a rdfs:Class , sh:NodeShape ;

43. sh:property [

44. sh:maxCount 1 ;

45. sh:node [

46. a sh:NodeShape ;

47. sh:property [

48. sh:datatype xsd:boolean ;

49. sh:path rdf:value

50.]

51.] ;

52. sh:path fixm:topOfClimb

53.]

54. fixm:Aircraft

55. a rdfs:Class , sh:NodeShape ;

56. rdfs:subClassOf fixm:Feature ;

57. sh:and (fixm:Feature) ;

58. sh:property [

59. sh:node fixm:FreeText ;

60. sh:maxCount 1 ;

61. sh:path fixm:aircraftColours

62.] ;

63. sh:property [

64. sh:class fixm:AircraftType ;

65. sh:maxCount 1 ;

66. sh:path fixm:aircraftType

67.]

PROOF-OF-CONCEPT
KG SYSTEM

26

2.4 RDFS/SHACL Document

The resulting document combines RDFS and SHACL because in AISA both formats are generated from
the same source and used together. The combination of RDFS and SHACL is very similar to UML class
diagrams.

Example aixm:AirportHeliport:

aixm:AirportHeliport

 a rdfs:Class ; # This is RDFS!

 a sh:NodeShape ; # This is SHACL!

PROOF-OF-CONCEPT
KG SYSTEM

27

3 Proof-of-Concept KG System

We developed the architecture for the AISA KG system, a compact Java library (delivered as Java
package in GitHub repository https://github.com/bneumayr/aisa-kg-system/) supporting this
architecture, and a small proof-of-concept KG system (also delivered as a Java package in the GitHub
repository) exemplifying the architecture as well as the usage of the Java library.

The AISA Project-level Concept of Operations set out in Chapter 5 of Deliverable 2.1 has at its center
the ATC Knowledge Graph (KG). In this section we describe an architecture for the data and metadata
in such a KG and for the software components for incrementally processing and querying the data in
the KG. The Proof-of-Concept KG System exemplifies this architecture and has the purpose of guiding
further developments in WP 4 and WP 5. The proposed architecture of a KG system facilitates
SPARQL Queries Capturing Monitoring Tasks based on traffic/airspace data converted to RDF. It
further accomodates the integration with other components such as the Prolog Reasoning Engine in
Prolog developed in Task 4.2 and Machine Learning Modules developed in WP3. The main goal is to
develop and assess the concept of the artificial SA based on a KG from a functional perspective rather
than to consider requirements of a real-time life system.

Air traffic data comes at rather high frequency, for example new flight states every 10 seconds, and
the SPARQL queries capturing monitoring task need to consider the newly incoming data but also
consider how the new flight states compare to previous flight states. Monitoring queries should not
be formulated only against the 'raw' input data but the input data should be processed beforehand,
calculations made, common parts of queries should be executed once and materialized so that many
queries can reuse the results. We also have to consider that some parts of monitoring queries are
difficult or impossible to formulate in SPARQL, especially spatio-temporal calculations such as, as a
simple example, the distance between two flights. With new incoming data the intermediate results
have to be updated as well, for this purpose the KG system needs to support incremental processing
– avoiding the need to recalculate and query everything from scratch once new data arrives.
Furthermore, an artificial SA is history sensitive and the KG thus needs to keep track of all its previous
states.

3.1 Requirements and Setting

Based on the project-level concept of operations and discussions we collected the following
requirements for a KG system architecture suitable for AISA.

The architecture should accommodate

• Recurring SPARQL queries for monitoring the situation (situational awareness is 'translated'
into SPARQL queries).

• Ad-hoc SPARQL queries for checking the KG's state during an experiment.

• RDF Schema reasoning to consider subClassOf and subPropertyOf hierarchies in the global
schema when necessary

• SHACL Validation: checking conformance against global schema when loading data

PROOF-OF-CONCEPT
KG SYSTEM

28

• Simple Inference/Derivation rules are formulated in SPARQL update requests or construct
queries (there is no need for SHACL rules which would serve the same purpose).

• Arithmetic and spatio-temporal processing will be coded in Java programs (e.g., calculate
distance between two flights) and not in SPARQL.

• External modules (e.g., machine learning modules, data from KG as input for ML models and
predictions from ML as input to KG) will be loosely coupled via file import and epxort and
with asynchronous processing.

• Data loading, i.e., loading of asserted data, can be done incrementally (data loaded into the
KG as they arrive over time) or at once (data with different timestampls loaded into the KG at
once

• The experiments conducted in Task 5.1 to assess AI SA will be conducted with one software
component which should have central control over the experiment.

• History sensitiveness and traceability: every piece of data or metadata in the KG comes with
the following metadata: when was the piece of data inserted into the KG and by which
module. Further, in case of derived informaton, it must be traceable based on which state of
the KG the data was derived.

• Distinguishing logical time (or simulation time) and physical system time: to rerun
experiments or to run experiments in 'slow-motion' the system needs to distinguish between
logical system time and physical system time (the real time of the system for performance
measurements). To make the difference clear: when rerunning an experiment the logical
times remain the same while the physical times change. Logical time progress should be
under the control of the person or system who runs an experiment.

• Transaction time (logical and/or physical system time) vs Observation/Occurrence time: The
occurrence time is the time in the real world when an event happens or is predicted to
happen, the transaction time (no matter if physical or logical) is the time when the
information about the event is added to the KG.

• Incremental Processing/Querying: adding data to the KG should not make necessary to rerun
from scratch all queries. Recurring queries should only consider the data added since their
last invocation.

Requirements for technology choices

• The programming language of choice in AISA is Java. There is no need for GUIs or otherwise
advanced user interfaces. Experiments will be automated in Java or via simple command line
interfaces. It is more important to provide the functionality via Java or provide Java code
snippets demonstrating how things should be done according to the architecture.

• The core components should be based on open-source technology so that the produced
software can also be made available open source as to maximize impact

Keeping in mind the short project duration and limited resources one of the central design goals is to
keep everything as simple as possible. To this end we specifiy deliberate limitations of the KG
systems. These limitations help to simplify the implementation, maintenance, orchestration, and
traceability of the experiments:

• Append-only: once added to the KG, data is not changed/updated anymore. Only outdated
data that is not needed/queried anymore may be retracted from the KG (without
consequences on the querying).

PROOF-OF-CONCEPT
KG SYSTEM

29

• Central control with serialized engine invocations: For the setup of the experiments we
assume central control with synchronous (i.e., serialized) invocation of modules and, hence,
serialized 'transactions' on the KG, avoiding the need for concurrency control which would
add to the technical complexity of the KG system without clear benefits for the experiments
conducted in WP 5. The only exception to this rule are ad-hoc queries (but by only querying
'committed' named-graphs and ignoring 'in-progress' named graphs these ad-hoc queries can
also be considered 'serialized').

• Asynchronous processing (with external modules) is supported by two connected module
invocations (two separate but connected KG transactions) akin to check-out and check-in in
version control systems: first, an invocation to export data from the KG which is used as
input for the external module and, second, an invocation to import the results of the external
module to the KG. The external processing happens in-between these two invocations in an
asynchronous manner without access to the KG.

RDF gives a lot of freedom. How to deal with this freedom and what basic structure we impose is the
topic of this section. Named graphs are used to facilitate the management of the knowledge graph
(such as for incremental/partial replication, incremental processing, purging of old data). The named
graphs do not come with metadata that are of interest in user queries but only with administrative
metadata that is needed to decide whether a named graph should be considered in a query or in
some part of a query.

3.2 System Components and Deployment

All the basic functionality for working with RDF, RDFS, SPARQL, and SHACL in Java is provided by the
open-source software library Apache Jena. As RDF graph store we use Jena TDB and as SPARQL
server we use Apache Jena Fuseki which comprises Jena TDB.

Figure 2 Components of the KG System

The KG system runs in two Java processes, one is the KG Server, which is an Apache Jena Fuseki
instance, which acts as storage engine and SPARQL server, the other is the central control

KG Manager

KG Server

PROOF-OF-CONCEPT
KG SYSTEM

30

component referred to as KG Manager which has registered a set of KG modules (implemented by
subclassing Java class provided with our Java library) which interact with the KG Server via SPARQL.
The loosely coupled integration via file export and file import of external software components (such
as the ML modules developed in WP 3) is also accomplished by KG modules which run as part of the
KG Manager.

3.2.1 Configuring Apache Jena Fuseki

Currently we are using version 3.16 of Apache Jena Fuseki 3.16 as a stand-alone server with UI.
(Apparently there are problems with the current version 3.17 with creating and fetching datasets).
Fuseki is configured with a single dataset (holding the AISA KG), made available via service
http://localhost:3030/aisakg/. To simplify switching between different configurations (for
performance studies) of the service available at /aisakg/, different configuration files may be added
to Fuseki's main directory with different batch files to start Fuseki with one of these configurations.

The configuration files are contained in the github repository in folder fuseki-configs/. They can be
added to Fuseki's installation directory and started with, for example:

> java -Xmx1200M -jar fuseki-server.jar --config=AISA-config-tdb.ttl

The Fuseki standalone server also serves a web application which can be used to pose queries and
inspect the current state of the AISA KG. There is no need to use this web interface for adding
datasets or for further configurations. We will mainly use it for ad-hoc queries to inspect/debug the
state of the AISA KG during experiments which are controlled from Java programs. The web interface
also provides an overview of the available services/endpoints (as configured by us) and some
statistics.

3.3 KG System Architecture

From a conceptual/logical perspective, a KG system comprises a KG, which is an RDF Dataset, and a
KG Module System (see Figure 3).

The KG which can be identified and located by its URL consists of a set of Named Graphs, i.e., RDF
Graphs each identified by a URI. We distinguish Named Graphs into Static Data Named Graphs,
which are created once and do not change afterwards, Dynamed Data Named Graphs, and New Data
Named Graphs. A dynamic data named graph has a sequence of new data named graphs as
components with new data named graphs appended over time. The URI of a new data named graph
is constructed from the URI of the dynamic data named graph it belongs to and its sequence number.
A new data named graph comes with temporal metadata indicating when it was inserted and
committed to the KG (commitTime) and on which state of the KG it is based on (basedOnTime). A
dynamic data named graph may materialize the union of its new data named graphs with metadata
lastRefresh indicating when this union was refreshed the last time.

The KG Module System (which represents the central control component of the KG Manager process)
comprises a set of KG Modules and controls the invocation of these modules and is also responsible
for advancing the logical time of experiments. KG modules are distinguised into Single-run modules
and multiple-run modules. A single-run module creates a static data named graph and a multiple-run

PROOF-OF-CONCEPT
KG SYSTEM

31

module creates and maintains a dynamic data named graph and creates the new data named graphs
belonging to that dynamic data named graph. Every time a multiple-run module is invoked, it creates
a new new data named graph. Multiple-run modules are further distinguished into internal modules
and external modules. Internal modules are invoked by calling method run() and are executed in a
serialized manner with the resulting new data named graph being inserted and committed
immediately. External modules are invoked by calling method exportInput() together with a later call
of method importResults(). The KG (a persistent RDF dataset on the KG Server) is fully managed by
the KG Module System in that every named graph in that RDF dataset is created by a module.

Figure 3 Conceptual structural model in UML of the KG and the KG Module System

3.3.1 Logical Time vs Physical Time

In order to rerun experiments with exactly the same input data (possibly also with the same ML
predictions) but possibly with different monitoring queries or different rule-based knowledge we
need to distinguish logical time (or simulated time) from the physical system time. The physical
system time is only used for performance time measurements while the logical time is in full control
of the KG manager.

PROOF-OF-CONCEPT
KG SYSTEM

32

3.3.2 Metadata Management

Each invocation of a module (via init(), run(), or exportInputs() followed by importResults()) produces
a new named graph. What metadata is attached to such a named graph depends on the module, and
it is hard-coded in the module. The module's named graph contains the module's static metadata. A
new data named graph has at least the following generic metadata (which is managed by the system
and needs not to be taken care of by the developers of a concrete KG system) :

• invocation time (a logical timestamp)

• commit time (a logical timestamp)

• the dynamic data named graph it belongs to and indirectly the module that inserted it

• sequence no (to simplify referring to previous turn, etc)

3.3.3 Selecting collections of Named Graphs of Modules

Objects are fully described within one graph, or, if the description is fragmented over multiple
graphs, then this fragmentation is known at the schema level. Thus the developer can ask, based on
this fragmentation schema knowledge, queries in the form "… WHERE { GRAPH ?g { ?s ?p ?o };
GRAPH ?g2 { ?s ?p2 ?o2 } } …" without the danger of missing query solutions. If objects are
represented in multiple graphs then the developer knows which parts are present in which graph and
can formulate the queries accordingly. Thus, there is no necessity to build union graphs in advance
for querying; instead as part of the queries for each graph pattern the graphs to be considered are
specified within the query. To hugely simplify this approach, the Java library described in the next
section comes with functionality for SPARQL preprocessing as described in Section 3.5. Additionally
one has the option to build materialized union graphs by implementing method
refreshDynamicDataNG() by the module and by calling this method to refresh the materialized union
graph.

3.3.4 Deleting outdated new data named graphs

Data should be organized in a way that allows to delete/archive outdated new data named graphs
without affecting query results. In our approach new data named graphs can only be
deleted/archived as a whole. If one wants to persist selected parts of a named graph one has to copy
these before. As a consequence of the deliberate simplification that every multiple-run module is
associated with exactly one dynamic data named and graph and hence one sequence of new data
named graphs it is not possible to implement (in a simple and traceable form) different archival
strategies within one module. This small drawback is much outweight by the major simplifications
due to the enforcement of a one-to-one relationship between multiple-run modules and dynamic
data named graphs.

PROOF-OF-CONCEPT
KG SYSTEM

33

3.4 Java Library

The Java package supporting this approach is at.jku.dke.aisa.kg in the GitHub repository.
Let us briefly explain how the conceptual model of Figure 3 is realized by this Java package. How to
build a concrete KG system based on this package is demonstrated by package
at.jku.dke.aisa.kg.sample1 which is described in Section 3.8.

An instance of Java class KGModuleSystem has a connection con to an RDF dataset (typically stored
on and served via Fuseki KG Server but the RDF dataset can also be in-memory and in the same Java
process), defines namespace prefixes used by all modules, and manages the logicalTime 'clock' used
for timestamping module versions.

UML class KG Module (see Figure 3) is realized by a Java interface KGModule and a Java class
AbstractKGModule. The interface defines methods that are meant to be called from the
KGModuleSystem to which the KGModule belongs.

• init() creates a static data or dynamic data named graph

• register(KGModuleSystem) registers the KGModuleSystem with the module, is the inverse of
KGModuleSystem::register(KGModule) and called by the latter to establish a bidirectional
relationships between the KG module system and its modules

• getName() returns the module's short name which is unique within the KGModuleSystem

• getModuleIri() returns the module's full name (IRI) which is constructed from the global
graph namespace specified by the KGModuleSystem and the module's short name

The abstract class AbstractKGModule implements interface KGModule and specifies common
functionality shared by all KG modules including the management of generic/administrative
metadata. It implements the above methods with method init() calling an abstract method doInit()
which is to be implemented by each concrete subclass of KGModule to load or create the module's
named graph (either a static data named graph or a dynamic data named graph). Method doInit() is
not included in the interface since it should be hidden from the KG manager, the latter should only
call method init() which takes care of the generic metadata management which should not be
reimplemented or overwritten by the concrete subclasses.

Most KG modules will have their own concrete subclass of KGModule. In this case the module's short
name will be hard-coded in the constructor of the concrete subclass making the class a singleton
class. The architecture also allows concrete subclasses of KGModule that act as engine of multiple
modules, in this case the module's name will be fixed when calling the constructor.

UML class Single-Run Module is realized by Java interface SingleRunModule and absstract Java class
AbstractSingleRunModule. Currently they are empty since single-run modules do not have generic
functionality beyond what every module has. An example of a single-run module in KG system
architecture is the schema module which creates the static data named graphs that contains the
global RDFS vocabulary and the SHACL shapes. This global schema is written to the KG by invoking
the module's init() method which in turn calls the doInit() method which is implemented by each
concrete subclass of AbstractSingleRunModule.

PROOF-OF-CONCEPT
KG SYSTEM

34

UML class Multiple-run Module is realized by Java interface MultipleRunModule and abstract Java
class AbstractMultipleRunModule. The interface adds method getTurn() which returns the current
sequence number, which is incremented with each module invocation (also referred to as turn). The
abstract class implements functionality common to internal and external modules such as
getInputPath() and getOutputPath() which simplifies reading and writing from the file system based
on generic module-specific file paths. Method initTurn() creates a new data named graph, queries
the invocation time of the previous version and writes the first parts of the version specific metadata
to the new data named graph including the logical invocationTime. Method commitTurn() commits a
new data named graph by writing the logical commitTime to the new data named graph. Most
importantly, the abstract class implements SPARQL preprocessing of special graph vars (see Section
on SPARQL preprocessing) which is an integral part of the approach. It facilitates the selection of (1)
all committed new data named graphs of a dynamic data named graph, (2) only those committed
since the previous invocation of the current module or (3) those committed before the previous
invocation.

UML class External Module is realized by Java interface ExternalModule and abstract Java class
AbstractExternalModule. The interface adds methods exportInput() and importResults(). The
abstract class implements these two methods which take care of generic metadata management. A
new data named graph is created by exportInput() and committed by importResults(). The abstract
class also specifies abstract methods doExportInput() and doImportResults() which have to be
implemented by concrete subclasses and which take care of the actual export and import.

UML class Internal Module is realized by Java interface InternalModule and abstract Java class
AbstractInternalModule. The interface adds method run() which is implemented by the abstract
class. Calling run() creates a new data named graph and immediately commits it. As part of running
the module it also measures the physical time duration and writes it to the new data named graph,
this performance measurement stored in the KG can be used for monitoring and reporting the
performance of modules. Method run() also calls an abstract method doRun() which is to be
implemented by each concrete subclass to specify the actual queries, update requests, and further
operations which are to be executed for deriving the contents of the new data named graph.

3.5 SPARQL Preprocessing

Java class AbstractMultipleRunModule implements SPARQL preprocessing which facilitates the
formulation of compact SPARQL queries over the versioned and modularized KG. The preprocessing
does not abstract away the versioning and modularization approach but it helps to avoid the writing
of boilerplate code to select the named graphs from the KG (considering the logical invocation time
of the current module invocation and of the previous module invocation) which should be
considered for queries or update requests. The basic assumption here is that the description of
complex objects/events is not distributed arbitrarily over named graphs, under this assumption we
do not need to provide union graphs for querying.

A special graph variable has the form ?G<optional number>_<module_name>_<mode> where mode
is one of "new", "old", or "all".

PROOF-OF-CONCEPT
KG SYSTEM

35

For example, any occurrence of

GRAPH ?G2_adsb_new {

is extended to (with 2021030117182300 being the previous invocation time and 2021030117184700
being the current invocation time).

GRAPH ?G2_adsb_new {

 ?G2_adsb_new

 aisa:module <http://aisa-project.eu/graphs/adsb>;

 aisa:commitTime ?time_G12_adsb_new.

 FILTER (?time_G2_adsb_new > 2021030117182300)

 FILTER (?time_G2_adsb_new < 2021030117184700)

Any occurrence of

GRAPH ?G2_adsb_old {

is extended to

GRAPH ?G2_adsb_old {

 ?G2_adsb_old

 aisa:module <http://aisa-project.eu/graphs/adsb>;

 aisa:commitTime ?time_G2_adsb_old.

 FILTER (?time_G2_adsb_old < 2021030117182300)

Any occurrence of

GRAPH ?G2_adsb_all {

is extended to

GRAPH ?G2_adsb_ all {

 ?G2_adsb_ all

 aisa:module <http://aisa-project.eu/graphs/adsb>;

 aisa:commitTime ?time_G2_adsb_ all.

 FILTER (?time_G2_adsb_ all < 2021030117184700)

The SPARQL preprocessor identifies special graph vars (e.g., ?G12_adsb_new) and includes query
parts that select named graphs based on the module (e.g., adsb) they belong to and based on their
commit time (e.g., after the invocation time of the previous module version). Class
AbstractMultipleRunModule provides a method that takes as input a non-preprocessed SPARQL
query or updata request and produces as output a preprocessed SPARQL query.

For example, the non-preprocessed SPARQL update request

 INSERT { GRAPH ?TURN {

 [] aisa:state ?state;

 rdf:type aisa:LaggingState;

PROOF-OF-CONCEPT
KG SYSTEM

36

 aisa:lag ?lag. } }

 WHERE { GRAPH ?G12_adsb_new {

 ?state adsb:requestTime ?rtime;

 adsb:hasTimePosition ?ptime. }

 FILTER (?rtime > ?ptime)

 BIND ((?rtime - ?ptime) AS ?lag) }

is expanded to

PREFIX graphs: <http://aisa-project.eu/graphs/>

PREFIX aisar: <http://aisa-project.eu/resources#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xs: <http://www.w3.org/2001/XMLSchema#>

PREFIX aisa: <http://aisa-project.eu/vocab#>

PREFIX adsb: <http://aisa-project.eu/adsb#>

INSERT { GRAPH graphs:adsbP1-5 {

 [] aisa:state ?state;

 rdf:type aisa:LaggingState;

 aisa:lag ?lag. } }

WHERE { GRAPH ?G12_adsb_new {

 ?G12_adsb_new

 aisa:module <http://aisa-project.eu/graphs/adsb>;

 aisa:commitTime ?time_G12_adsb_new.

 FILTER (?time_G12_adsb_new > 2021030117182300)

 # graphs with commit time > invocation time of previous turn

 FILTER (?time_G12_adsb_new < 2021030117184700)

 # graphs with commit time < invocation time of current turn

 ?state adsb:requestTime ?rtime;

 adsb:hasTimePosition ?ptime. }

 FILTER (?rtime > ?ptime)

 BIND ((?rtime - ?ptime) AS ?lag) }

3.6 RDF Schema (RDFS) Reasoning

Supported reasoning tasks: transitive closure of taxonomies (rdfs:subClassOf and
rdfs:subPropertyOf).

Location of RDFS statements: in one global schema

Execution of reasoning: at query time (possibly with query preprocessing)

PROOF-OF-CONCEPT
KG SYSTEM

37

The AISA KG will have one named graph (referred to as graphs:schema) containing the RDFS
vocabulary and global SHACL schema. RDFS inferences based on the transitive closures of
rdfs:subPropertyOf and rdfs:subClassOf can be used using property path expressions (namely
ZeroOrMorePath expressions with operator *). Whenever a query should not only consider the
direct instances of a class but also the indirect instances of a class with regard to the schema the
query should be transformed from, e.g.,

WHERE {

 ?s rdf:type schema:Person.

}

to

WHERE {

 ?s rdf:type ?C_schema_Person.

 GRAPH graphs:schema {

 ?C_schema_Person rdfs:subClassOf* schema:Person.

 }

}

Similarly, triple patterns with properties for which also sub-properties should be matched should be
transformed as follows. For example from

WHERE {

 ?s schema:hasParent ?o.

}

to

WHERE {

 ?s ?P_schema_hasParent ?o.

 GRAPH graphs:schema {

 ?P_schema_hasParent rdfs:subPropertyOf* schema:hasParent.

 }

}

The automation of these transformation patterns is rather straightforward and subject to future
work. Then the developer only only needs to write

PROOF-OF-CONCEPT
KG SYSTEM

38

WHERE {

 ?s rdf:type ?C_schema_Person.

 ?s ?P_schema_hasParent ?o.

}

and the graph patterns over the schema (shown above in red) are added by a SPARQL preprocessor.

3.7 SHACL Validation

SHACL validation should be done prior to committing a new data named graph of a module as part of
the doRun() or doImportResults() actions. How to invoke SHACL validation from Java is described in
Section 2.1.6.

In some cases the to-be validated data graph will consist solely of a single new data named graph. in
many cases the SHACL validation will need data from other named graphs in the KG. For this purpose
it is up to the engine's developer to use a construct query to include these other named graphs into
the data graph that is subject to validation.

In the basic approach all the SHACL shapes are in the KGs global schema. The global schema may be
extended by modules-pecific SHACL shapes (we will investigate this as part of developing the KG-
Prolog-Mapper in Task 4.2). In this case it will be up to the module's developer to specify the shapes
graph accordingly as part of the implementation of the doRun() or doImportResults() actions.

It is further up to the module's developer to specify exception handling in case of a negative SHACL
validation report. One approach is to just add the validation report to the new data named graph so
that it can be queried and considered in further processing steps as needed.

3.8 Proof-of-Concept KG System

The proof-of-concept KG system (delivered as Java package at.jku.dke.aisa.kg.sample1 on the GitHub
repository) implements

• a module adsb (class ADSBLoader) that incrementally loads ADS-B data into the KG. In the
current implementation the ADBSLoader imports flight positions from a dataset contained in
file input.trig (contained in folder fileinput/adsb/ associated with the module). File input.trig
currently contains data generated from json-data retrieved from opensky-network.org every
10 seconds for a bounding box surrounding Austria on Feb 09 2021 from 19:14:00 to
19:24:50 and transformed to RDF based on code developed by students in a practical course
under the supervision of Sebastian Gruber. The 59 named graphs are ordered by retrieval
time with a distance of 10 seconds. The ADBSLoader imports one named graph per turn,
hence, the real time distance between turns is 10 seconds. To make tests more interesting
(especially with ADSBProcessor2) we have deleted one flight and state from graph:g0 and
another one from graph:g1.

• a module qadsb (class QueryADSB) which incrementally queries the contents of dynamic
data named graph adsb and outputs the query results to the console.

PROOF-OF-CONCEPT
KG SYSTEM

39

• a module adsbP1 (class ADSBProcessor1) which incrementally identifies lagging flight states
(i.e., flight states where the time position is older than the request time) and inserts these
flights state classification into the KG and queries the newly inserted data to report them to
the console

• a module adsbP2 (class ADSBProcessor2) which incrementally identifies incoming flight and
inserts these flight state classification into the KG and queries the identified incoming flights
by 'joining' the newly created graph with existing adsb data

• a module pairs (class FlightPairs) which incrementally identifies pairs of flights and pairs of
flight states in adsb and adds them to the KG. The module also calculates a distance (only
based on latitute and longitude, not translating into miles/kilometres) between the two
flights, demonstrating how such calculations can be done in Java by selecting the relevant
data using SPARQL, doing the calculations in Java, creating the RDF model in Java and writing
the model back into a new data named graph on the KG.

• a module report (class PerformanceReport) which queries the data and metadata (which also
contains a runtime duration for every module invocation) of all new data named graphs to
generate a performance report. The performance report is written to the console and also to
the file system (to folder fileoutput/report/ associated with module report). The perfomance
report is also written as CSV to fileoutput/report/aggregated_report_1.csv and in non-
aggregated form to fileoutput/report/report_1.csv. Executing the report module multiple
times would produce multiple version of these files, e.g., report_2.csv, report_3.csv, etc.
With the number being the module's current sequence number. This also demonstrates how
file imports and exports (which are central for integrating external modules, like ML
modules, into the KG system, loosely coupled via the file system) are aligned with our
versioning approach.

The modules are all implemented as concrete subclasses of AbstractInternalModule and implement
interface InternalModule. The package also comprises concrete subclasses/implementations of
AbstractSingleRunModule/SinglerunModule and AbstractExternalModule/ExternalModule but only
as stubs without proper functionality just to check whether the metadata management works as
expected also for these types of modules.

By running KGSystem1, which just consists of a main method, an instance of KGModuleSystem is
created and the above modules are registered. Via the KGModuleSystem instance a connection with
the KG Server is established and all the previous contents are deleted. Then the registered modules
are executed in the order (adsb, qadsb, adsbP1, adsbP2, pairs) 50 times followed by one execution of
module report.

3.8.1 Results of Initial Performance Measurements

To get first insights into the approach’s performance characteristics we conducted initial
performance measurements. The following performance report was generated by running
KGSystem1 (as described above) as KG Manager and Fuseki with a TDB database as KG Server on the
same machine (a HP EliteBook 850 G2 with an Intel® Core™ i7-5600U CPU @ 2.60 GHz, 2 kernels, 4
logical processors running with 16 GB of physical RAM, running Windows 10 Pro). The performance

PROOF-OF-CONCEPT
KG SYSTEM

40

report shows the execution time in ms per module invocation and the number of RDF triples in the
new data named graph (minimum, maximum, and average of the 50 runs).

adsb,

259 ms (min), 825 ms (max), 375 ms (avg),

382 triples (min), 485 triples (max), 404 triples (avg).

qadsb,

114 ms (min), 505 ms (max), 152 ms (avg),

6 triples (min), 6 triples (max), 6 triples (avg).

adsbP1,

157 ms (min), 348 ms (max), 217 ms (avg),

6 triples (min), 72 triples (max), 34 triples (avg).

adsbP2,

127 ms (min), 355 ms (max), 161 ms (avg), 6 triples (min),

44 triples (max), 7 triples (avg).

pairs,

332 ms (min), 1239 ms (max), 449 ms (avg),

1077 triples (min), 1777 triples (max), 1234 triples (avg).

module minTime maxTime avgTime minCount maxCount avgCount

qadsb 114 505 152 6 6 6

adsbP1 157 348 217 6 72 34

adsbP2 127 355 161 6 44 7

adsb 259 825 375 382 485 404

pairs 332 1239 449 1077 1777 1234

3.8.2 Console Application for Interactive or Scripted KG Sessions

Class KGModuleSystem also provides a console application to facilitate interactive KGModuleSystem
sessions where modules are invoked via textual commands. The following shows a sample interactive
session (with user inputs in green – which could alternatively be provided by a text file).

Your commands: > run adsb

adsb reads: http://aisa-project.eu/graphs/g0

adsb - Request time: 1612894440

> run adsb

adsb reads: http://aisa-project.eu/graphs/g1

adsb - Request time: 1612894460

> run pairs

pairs: 342 distances between flights inserted

> run adsb

adsb reads: http://aisa-project.eu/graphs/g2

adsb - Request time: 1612894470

> run pairs

pairs: 190 distances between flights inserted

> run pairs

PROOF-OF-CONCEPT
KG SYSTEM

41

pairs: 0 distances between flights inserted

> run report

adsb, 1, 545 ms, 396 triples.

adsb, 2, 303 ms, 396 triples.

adsb, 3, 290 ms, 417 triples.

pairs, 1, 582 ms, 2400 triples.

pairs, 2, 538 ms, 1336 triples.

pairs, 3, 245 ms, 6 triples.

adsb, 290 ms (min), 545 ms (max), 379 ms (avg), 396 triples (min),

417 triples (max), 403 triples (avg).

pairs, 245 ms (min), 582 ms (max), 455 ms (avg), 6 triples (min),

2400 triples (max), 1247 triples (avg).

> exit

Bye...

PROOF-OF-CONCEPT
KG SYSTEM

42

Appendix A Glossary

Abbreviation Term

ADS-B Automatic Dependent Surveillance-Broadcast

AI Artificial Intelligence

AIXM Aeronautical Information Exchange Model

ATC Air Traffic Control

ATCO Air Traffic Control Officer

ATM Air Traffic Management

FIXM Flight Information Exchange Model

ICAO International Civil Aviation Organization

JPL a Java/Prolog Interface

ML Machine Learning

KG Knowledge graph

PoC Proof-of-Concept

RDF Resource Description Framework

RDF/XML a syntax to express an RDF as an XML document

RDFS Resource Description Framework Schema

SA Situational Awareness

SHACL Shapes Constraint Language

SPARQL SPARQL Protocol and RDF Query Language

SWIM System-wide Information Management

Turtle Terse RDF Triple Language

UML Unified Modeling Language

XMI XML Metadata Interchange

XQuery XML Query Language

Table 1 Table of acronyms

PROOF-OF-CONCEPT
KG SYSTEM

43

