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Preface 

 

View of an Air Traffic Controller 

Wednesday 4th of May in the afternoon at a control sector in Zurich. The sky is full of cumulus nimbus 
cells, and I have 20 aircraft on frequency which need to be guided safely through the airspace and 
around the weather cells. I am an Air Traffic Controller working in the Area Control Centre in 
Dubendorf, Zurich for 12 years but each time I have a situation like this my pulse rises and I am focused 
and fully aware that I am not allowed to make any mistakes. As an ATCO my main job is to guide 
airplanes safely and efficiently through the air. In stressful situations such as poor weather and heavy 
traffic, it is hard to always keep the situation awareness as high as desired. In situations with a high 
level of stress, a machine which supports us would be a great benefit and an additional safety net. At 
Skyguide we have a great set of tools which already work fine and support us in all kinds of situations. 
The future though points in the direction of Artificial Intelligence and that’s what is described in the 
following paper. 

Jennifer Burkhalter, ATCO at Skyguide 
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Abstract  

This report presents the results of two simulation experiments performed with an AI-based situation 
awareness system (AI SA system) developed in the AISA project to check the accuracy of the AI SA 
system’s estimations and predictions and its capability to contribute to human-machine team situation 
awareness. It represents the AISA project deliverable 5.2 Report on Human-Machine Distributed 
Situation Awareness and contains four topical sections – described below – that address requirements 
to fulfil the project tasks 5.1 Comparison of SA between AI and ATCO and task 5.3 Human performance 
in distributed SA. The task 5.2 Risk assessment of AISA is covered in a separate deliverable D5.1 Risk 
assessment report.  

• Topical section 1: Measurement of ATCO situation awareness and scanning behaviour 

• Topical section 2: Comparison of human and machine situation awareness  

• Topical section 3: Exploration of human-machine team situation awareness and its impact on 
human performance 

• Topical section 4: Accuracy of AI SA system’s estimations and predictions and its level of 
situation awareness 

Two simulations were conducted with licensed Air Traffic Controllers working as radar executive. 
Situation awareness was assessed with multiple methods. The probe technique was applied to 
compare compare human and artificial situation awareness. ATCOs’ experience with AI-based machine 
situation awareness (receiving “AI SA inputs”) and its impact on performance were explored. Post hoc 
simulations with data collected in experiment 1 were conducted to assess the accuracy of AI SA 
systems’ estimations and predictions.  

Main findings per topical section are:  

1. ATCOs with preserved situation awareness have characteristic scanning behaviour: Their gaze 
is less fixed on aircraft or conflicts, and they filter out more effectively non-critical information 
than ATCOs with degraded situation awareness do.  

2. Partial agreement of human and machine situation awareness on conflict detection. Both 
human and AI SA system missed conflicts (false negative) and named conflicts that were not 
present (false positive). The AI SA system is better at monitoring non-obvious/unexpected 
aspects (e.g., non-conformances). 

3. ATCOs detected some conflicts earlier and solved them faster when they received AI SA inputs 
compared to working without AI SA inputs. Input modality (oral messages) was inadequate 
due to distraction and additional workload. 

4. Successful automation of 46 out of 57 en-route air traffic monitoring tasks. Accuracy of 
Machine Learning module predictions for CD tested (70%): Partly results were inaccurate, and 
predictions were partly inconsistent. Plausibility checks on CD module’s inputs and outputs 
were successful.  

Limitations reduce the validity of situation awareness measurement for ATCOs (use of an unfamiliar 
simulation tool), the significance of the results (exploration of human-machine team situation 
awareness was done with early-stage implementation of the AI SA system and with inadequate design 
of HMI inducing additional workload on ATCOs).  

The results generally support the proof-of-concept system of the AISA project in its ability to 
accomplish en-route air traffic management tasks. Further improvement of accuracy is needed for 
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machine learning modules. Accuracy per se is not sufficient, considerable effort needs to be spent on 
solutions on how to integrate machine situation awareness. A long anticipation span is desirable for 
optimisation but does not comply with ATCOs’ need for prioritization of tasks and information. The 
HMI of the future AI SA system will need distinctive ways of informing ATCOs about aspects of higher 
or lower urgency. Half of the participating ATCOs were willing to trust future AI-based tools – even 
after partially unfavourable experiences with an AI-based SA system in the experiment, about one third 
is neutral and a fifth is negative about including AI in tools. 
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Executive Summary 

AI situation awareness system is an AI-based machine situation awareness system that was developed 
to accomplish en-route air traffic monitoring tasks. Its capability to fulfil that purpose as well as the 
usefulness of machine situation awareness as a contribution to human-machine team situation 
awareness were subsequently investigated in two experimental studies using human-in-the-loop 
simulation with ESCAPE Light from EUROCONTROL. The settings included only single ATCOs in the role 
of radar executive, no radar planner was involved. The research focuses on whether machine situation 
awareness would be capable of developing situation awareness and subsequently sharing it with 
ATCOs. 

An initial experiment was conducted in November 2021 with 20 licensed ATCOs. The aim was to assess 
the individual ATCOs’ situation awareness and subsequently compare it with the artificial situation 
awareness. Multiple methods were used to measure the ATCOs’ situation awareness: subjective rating 
(SASHA_Q), gaze analysis by eye-tracking, and implicit measurement of performance. Simulation data 
gathered in the initial experiment was then used as input for the AI situation awareness system to 
process and generate machine situation awareness. This was done with probe technique using SPARQL 
queries for specific aspects of the situation. This step was necessary because the AI situation awareness 
system could not compute machine situation awareness in real-time at the stage of project-level 
implementation. 

A second experiment was conducted in January 2022. The SPARQL query outputs of the AI situation 
awareness system were translated into oral inputs and given to 16 licensed ATCOs. Only three of these 
ATCOs had also been involved previously in the initial experiment. In one scenario, participants were 
able to freely interact with pilots (interactive condition). For the rest of the scenarios, ATCOs observed 
and implemented actions that were previously recorded in experiment 1 (“watch only” condition). This 
was necessary because pre-calculated AI situation awareness inputs would not match with ATCOs’ 
manipulations. ATCOs’ situation awareness was assessed with the same methods as in the initial 
experiment, with the addition of probe technique (SASHA_L). This allowed for a direct comparison 
between machine and ATCO situation awareness on identical queries about specific aspects of the 
situation. In addition, the contribution of the AI situation awareness system to human-machine team 
situation awareness and human performance was explored. ATCOs were asked to judge the usefulness 
of AI situation awareness inputs and to provide feedback on their experience interacting with the AI-
based tool.  

After the completion of the second experiment, the accuracy of the AI situation awareness system was 
further improved by implementing the remaining tasks (46 out of 57, including an additional one) for 
en-route air traffic monitoring (AISA project level implementation of machine situation awareness). 
Further simulations were conducted in April 2022 to precisely quantify the accuracy and functionality 
of the AI situation awareness system’s estimations and predictions at the project-level stage of 
implementation. Based on the data collected in the initial experiment, AI situation awareness system’s 
estimations and predictions for machine situation awareness were re-calculated. They were then 
compared with data from the simulated scenario progress. Any further ATCO interventions were 
excluded. This made it possible to check the correctness of machine situation awareness using precise 
data. In addition, the sensitivity (type II error: false negative) and the probability of false alarms (type 
I error: false positive 

The results of the initial experiment showed variations in ATCOs’ situation awareness based on gaze 
analysis for prioritisation of attention. In the second experiment, the ATCOs’ situation awareness was 
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generally not as complete as artificial situation awareness outputs from an early implementation stage 
version of the AI situation awareness system. The latter – aside from generally being more complete – 
suffered also from false alarms and misses. Performance in the condition with artificial situation 
awareness inputs (second experiment) was slightly better for some of the scenarios, but worse for 
others compared to performance in the condition without artificial situation awareness inputs (first 
experiment). The majority of the participating ATCOs evaluated artificial situation awareness inputs at 
the early stage of implementation as being rather irrelevant. What they appreciated the most were 
the artificial situation awareness inputs about non-conformances of aircraft to their instructions.  

Accuracy of the AI situation awareness system at the project-level of implementation (with most KG 
monitoring tasks implemented) showed to be high. Moreover, the KG monitoring tasks performed 
successfully in different traffic scenarios which proved their robustness. Several indicators of situation 
awareness degradation were defined based on which KG monitoring tasks were evaluated and 
compared to human situation awareness. Besides KG monitoring tasks, machine learning module 
predictions are compared to actual values. The majority of KG tasks deal with the conflict detection 
ML module which is introduced and evaluated through various methods. The results showed that most 
of the conflict detection module predictions are accurate. Type I error is persistent and present 
throughout different analyses methods. Furthermore, conflict detection module predictions are 
compared to human conflict detection and resolution. The conflict detection module predictions did 
not change their accuracy regardless of the criterion distance (separation minimum violation without 
ATCO action vs. predicted minimum distance of 12 NM or less). 

It may be concluded that the proof-of-concept system defined in the ConOps of the AISA project can 
successfully handle selected en-route air traffic monitoring tasks with sufficient accuracy. Further 
progress in accuracy is needed for the future AI situation awareness system, especially with the 
machine learning modules. Moreover, ATCOs’ reactions and feedback to artificial situation awareness 
inputs in experiment 2 showed that the design of the future human-machine interface needs to 
consider that today executive controllers need a lot of concentration for radio communication and are 
focused on a short to intermediate span of anticipation due to traffic complexity and dynamic. In 
contrast, machine situation awareness can include large anticipation spans, that may be used for 
optimisation. A large anticipation span is desirable if accuracy in artificial situation awareness inputs is 
provided reliably, and changes foreseen in the flight plan are considered by machine situation 
awareness. 

The proof-of-concept system does not function in real-time – experiment 1 data and CD module 
outputs must be manually exported and converted to RDF format before the automated tasks are 
applied to the data. Analysis of processing times showed that the system is potentially capable of real-
time operation, which is interesting for future development system purposes. The processing time of 
a single graph, representing a snapshot of a single traffic situation, is similar to the refresh rate of an 
ATCO’s working position.  

System components, operation and outputs form a relevant and accurate representation of the traffic 
situation being processed. To objectively assess the situation awareness attained by the system, an 
existing AI system situation awareness framework was applied. The specific architecture and 
capabilities of the AI situation awareness system rate highly on the scale presented in the framework. 

Methodological limitations of the human-in-the-loop simulations were rooted in the lack of familiarity 
that ATCOs had with the simulation tool. This may have created additional workload, impaired the use 
of long-term memory content such as mental models and schemas for situation awareness, and, in 
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some cases, frustrated ATCOs. These effects altogether lowered the validity of the measured human 
situation awareness. Another limiting factor was the stage of implementation of the AI situation 
awareness system by the time of the second experiment. It would have been favourable to have 
artificial situation awareness inputs from a fully implemented artificial situation awareness system 
available to investigate human-machine team situation awareness and human performance. 
Nevertheless, using human-in-the-loop simulation was useful as it provided data for later simulation 
to quantitatively check the plausibility of the accuracy of the project-level implementation of the 
artificial situation awareness system’s predictions and estimations.  

Future research and development should further improve the accuracy of the artificial situation 
awareness system in accomplishing en-route air traffic monitoring tasks. Finding an optimal balance 
between training and test datasets and between sensitivity and the number of false alarms is key. From 
a safety point of view, it is favourable to ensure high sensitivity for threats of loss of safe separation at 
the costs of false alarms. From operational experience, false alarms will undermine trust in the artificial 
situation awareness system.  

Keeping ATCOs aware of the situation, of impending threats and future trends is necessary for safe 
and efficient air traffic. Allowing active involvement to ensure readiness and skilfulness in reaction is 
probably the most challenging part for the design of future ATC. How to combine best machine and 
human situation awareness is currently investigated by the SESAR HORIZON 2020 projects MAHALO 
(Modern ATM via Human/Automation Learning Optimisation) and TAPAS (Towards and Automated 
and exPlainable ATM System) focusing on comprehensibility and acceptance of AI-based tools in ATC. 
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1 Introduction 

The use of AI-tools are beneficial to air traffic controllers (ATCOs) if they were capable of making 
accurate predictions, offering recommendations for optimal service, and monitoring air traffic and 
compliance. The human element has been identified as a relevant factor limiting increases in air traffic 
management (ATM). Human performance affects overall system safety and effectiveness in air traffic 
control (ATC)  

This chapter provides information on the AISA project and its background. It explains the motivation 
and research questions used for evaluation of the AI SA system.  

1.1 Summary on AISA Project 

The SESAR 2020 project AISA – AI Situational Awareness Foundation for Advancing Automation – is an 
exploratory research project associated with digitalisation and automation principles for air traffic 
management (ATM). It investigates the use of artificial intelligence to generate situation awareness 
for en-route air traffic monitoring tasks and its contribution to distributed human-artificial team 
situation awareness. The AISA project has developed an AI situation awareness system (AI SA system) 
with a reasoning engine that is based on domain-specific knowledge graphs, and which interacts with 
machine-learning modules for conflict detection, 3D trajectory prediction and traffic complexity 
estimation. What AISA requires to have situation awareness was previously operationalized in 57 en-
route air traffic monitoring tasks that were identified in the concept of operations for the project. From 
these, 46 tasks were selected for implementation within the scope of the project.  

A proof-of-concept system was built and tested in experiments using low-fidelity human-in-the-loop 
simulations. Inputs from AI were presented to ATCOs – mimicking real-time human-machine 
interaction – in an interactive as well as “watch only”-type of simulation to test the accuracy of 
machine situation awareness and to investigate its comparability and compatibility with human 
situation awareness. 

1.2 Background of the AISA Project 

AI is considered a promising solution to augment the capacity and safety in ATC and an important 
prerequisite to implement integrated solutions rather than having several tools for single purposes in 
place (e.g., for conflict detection and avoidance, for conformance management, etc.). However, it is 
important that ATCOs can understand and share situation awareness with AI SA system.  

The concept of operations states three different descriptions of the system in regard to time horizon 
(project level, vision 2035, vision 2050). The goal of the AISA project is to integrate different data 
sources and to reach artificial situation awareness regarding en-route air traffic monitoring tasks that 
is comparable to ATCO situation awareness. 

The innovative approach combines a reasoning engine with machine learning (ML) modules to ensure 
comprehensibility of the AI SA output on artificial situation awareness for ATCOs and to check the 
plausibility of ML modules’ estimates and predictions.  
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Throughout the course of developmental stages, the integration of different sources of data are 
automatised. It must be pointed out that the evaluation study comparing ATCO situation awareness 
with artificial situation awareness used an early stage of AI SA system implementation (Section 1.2.4). 
Nevertheless, this effort is considered favourable in terms of fast failing and learning in the design and 
development process.  

1.2.1 AISA Status Reached 

As stated in the previous chapter, the AISA concept of operations contains different descriptions of the 
AI SA system regarding the time horizon – vision 2035, vision 2050 and the project level description. 
While the two “vision” system descriptions offer the “big picture”, the goal of the third was to describe 
the proof-of-concept knowledge-based system which was to be developed in this project. The purpose 
of that proof-of-concept system was not to reach the technology readiness level of a real-time system, 
but to explore the feasibility of such a system by developing and testing its most vital components.  
A conceptual diagram of the proof-of-concept system is shown in Figure 1. 

 

Figure 1: Conceptual diagram of the proof-of-concept machine situation awareness system  

Several notable points were added to the description of the proof-of-concept system – instance data 
would not be automatically generated, that the scale of the system would be (geographically and 
temporally) limited, that user interface would be limited, and that the system would not be real-time. 
Those points are important for the overall system and informed the development of sub-systems. The 
following sub-chapters are intended to show which parts of the initial proof-of-concept system were 
successfully implemented and to explain discrepancies between it and the final version. 
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1.2.1.1 Knowledge Graph 

Populated by knowledge from diverse sources such as the ESCAPE Light simulator and the developed 
machine learning modules, the knowledge graph (KG) serves as the central part of the system. To add 
the knowledge to the graph, an underlying architecture had to be constructed. As envisioned, 
aeronautical exchange models (AIXM, FIXM) were used because they already contain semantic 
information on air traffic and aeronautical concepts. Since these concepts are described in Unified 
Modelling Language (UML), a mapper was developed to transfer them to the Resource Description 
Framework Schema (RDFS) and Shapes Constraint Language (SHACL). 

The “UML to RDFS/SHACL” mapper takes a chosen subset of an exchange model and produces 
equivalent RDFS vocabulary/SHACL constraints. The vocabulary of a graph describes which types of 
concepts may be used in a KG, while SHACL constraints describe structure (properties, type, and range 
of values etc.). Not all concepts necessary for the AI SA KG system are described in AIXM and FIXM–
additional vocabulary and constraints were added directly to RDFS and SHACL, as the need arose. 
These changes were planned for the concept of operations in D2.1 (AISA Consortium, 2020a). 

The creation of graph vocabulary and structure was a prerequisite for the addition of specific traffic 
situation data. Even though the initial plan was to create these data instances manually, the scope of 
work required certain parts of the process to be automated. This offers an additional advantage as it 
brings the proof-of-concept system closer to the real-time system, which will need to employ 
automation to achieve real-time operation. The most important example of automation was the 
translation of data exported from the ESCAPE Light simulator to RDF files. 

Instance data was created for traffic situations inside a single en-route sector within the Swiss airspace, 
LSAZM567, ranging from FL355 to FL999. A Swiss sector was chosen because ATCOs from Skyguide 
were tasked with system evaluation. Traffic information is based on AIRAC 1907, from which a single 
day (namely 4 July 2019) was chosen for evaluation purposes – the traffic on that day was deemed to 
represent pre-COVID traffic well. The chosen date was not used to train the conflict detection machine 
learning module.  

The data was divided into 2 groups – static and dynamic. Static data includes all knowledge which does 
not change with time or changes rarely, such as sector border coordinates, ML module training 
statistics, etc. These were all collected to a graph named “default” and added to each exercise. 

All ATCOs were given identical ESCAPE Light traffic scenarios to solve. Exported data was later 
converted to an RDF graph every time the ATCO issued a clearance. If there were no clearances, the 
pause between timestamps/graphs was a maximum of 30 seconds. Dynamic data for each timestamp 
was stored to a graph named “g(number)”, where the initial timestamp’s RDF graph being named g0. 
This encompasses data such as flight data, airport data, machine learning module outputs, and other 
data. 

1.2.1.2 Rule-based Knowledge 

Serving as a counterpart to the factual knowledge shown in the Section (1.2.1.1), rule-based knowledge 
is added to the system to be executed on top of the factual knowledge (i.e. data) represented in the 
KG. It represents the rules of ATC which the ATCOs apply to traffic situations and events to gain 
situational awareness and control traffic. The implementation of rule-based knowledge was initially 
planned for SWI-Prolog (a free implementation of the Prolog programming language), but most of the 
AI SA tasks were found to be simple enough for the implementation to be done in the Java 
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programming language. A single task was implemented in Prolog to compare the results and confirm 
they are equivalent, but a decision was made to complete the already under-way implementation in 
Java to ensure system homogeneity. 

No matter the implementation, rule-based knowledge requires the facts stored in the KG. Those facts 
were accessed by using SPARQL Protocol and RDF Query Language (SPARQL) in Java classes. A more 
detailed description of AI SA task implementation in Java will be given in the section Automated Tasks 
(1.2.1.4). What is important to note is that each task (and its underlying rules) was developed through 
the work of subject matter experts (SMEs) to ensure that conclusions/outputs were reached in a 
proper way and that they conveyed appropriate information to the ATCO. 

1.2.1.3 Machine Learning Modules 

While some data sources – aeronautical information publications, Base of Aircraft Data (BADA) – offer 
information that does not need to be checked for correctness by the user, information pertaining to 
future states (such as weather forecasts or position predictions) is not as trustworthy. ATCOs may use 
high integrity information to confirm the plausibility of traditional system tool predictions, so the same 
approach was adopted to confirm the results of machine learning (ML) modules. The nature of ML 
modules produced another plausibility confirmation method – since the modules were trained on 
known datasets, scenario data that was used could be checked against those datasets so the system 
may flag outlying data. 

In all, three machine modules were developed: 

[1] Trajectory prediction module  

[2] Conflict detection (CD) module 

[3] Complexity assessment module 

4D trajectory prediction module uses a two-step process. A neural network is trained for static aircraft 
track prediction without the time domain so it can predict a granular static track of the flights. The 
second step is the combination of the actual aircraft state and the predicted track (aircraft-fixed 
pattern) in order to determine a concrete future position in 100 NM. The databases OpenSky Network 
for ADS-B (Automatic Dependent Surveillance–Broadcast) data as well as the DDR2 EUROCONTROL 
database for flight which is described in D3.1 (AISA Consortium, 2021a) were used. 

Conflict detection module revolves around the concept of Situation of Interest (SI). An SI would be 
when an aircraft pair is expected to intersect while having a horizontal separation lower than a pre-
defined separation (10NM) and breach the vertical separation minima (1000 ft). Two approaches have 
been developed: the Static mode predicts SI and their safety metrics once an aircraft enters the 
airspace and the Dynamic mode makes the predictions throughout the aircraft's evolution within the 
airspace. Safety metrics are represented by the Minimum Distance, distance to reach the Minimum 
Distance and the time to reach the Minimum Distance for each aircraft pair as described in D3.2 (AISA 
Consortium, 2021d).  

Air traffic complexity estimation module uses a novel solution that utilises ATCO tasks which are 
defined depending on the traffic situation. The model uses air traffic situation characteristics in order 
to determine ATCO tasks for each aircraft, which can then be expressed as a unique traffic situation 
signature and graded according to the methodology developed in a previously conducted study. 
Coefficients of the linear regression model are used to determine the contribution of a task to the 
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overall complexity. This model is also able to identify the most complex aircraft, the one that causes 
the highest complexity rise, and check how changes in its parameters affect the overall complexity 
described in D3.3 (AISA Consortium, 2021b).  

As shown in Section 1.2.1.4, the conflict detection module is the most frequently used of the three ML 

modules. The module itself is not integrated into the rest of the KG system yet, but this did not present 

a problem since both input and output conversions of the model were successfully automatised. 

Necessary data was first converted from its raw form to the form used by the module, predictions were 

generated and converted into prepared Resource Description Framework (RDF) nodes and included in 

appropriate KG. 

Statistical data representing the training dataset of the module was added to the static graph of each 
scenario, so it could be used to check the plausibility of conflict predictions. SPARQL queries access 
both the statistical data on each aircraft in a conflict prediction pair and the current value for each 
parameter to be checked – altitude, speed, track, latitude, longitude, and vertical rate. The difference 
between the current value and training data mean value is then expressed using standard deviation 
ranges seen in Table 1. To analyse how much the current state values diverge from the mean value of 
training data, four categories were introduced: 1σ, 2σ, 3σ, and the “over 3σ” category. These 
categories correspond to the sigma band where the current state values are. Therefore, for every 
aircraft pair there are 8 different sigma band categories (altitude, speed, heading and vertical rate for 
each aircraft). The Table 1 below shows the statistics for these categories from the conflict detection 
module training data. In this example data about Airbus A320 is shown. Except minimum and 
maximum value for each category, the table also shows distribution of values in a way as to present 
what is the limit value in which there is 25-50-75% of the whole data values. Multiple correlation 
analysis used to check for correlation between the ML module sigma band category and the predicted 
minimum distance accuracy showed that these variables are not statistically related. 

Table 1: Example of statistical data for plausibility check of conflict prediction 

A320 altitude geo 
altitude 

ground 
speed 

latitude longitude track vertical 
rate 

count 1832175 1832175 1832175 1832175 1832175 1832175 1832175 

mean 36732.36 38087.62 440.4109 47.11373 8.605677 210.2047 12.72612 

sd 866.6321 1658.498 39.17293 0.45306 1.015303 100.618 211.4941 

min 35500 875 69 46.10445 6.95448 0 -3136 

25% 36000 37400 412 46.79892 7.740672 130.7967 0 

50% 36725 37950 437 47.16289 8.530602 236.8071 0 

75% 37025 38775 469 47.47416 9.426407 293.763 0 

max 44950 128000 576 47.88332 10.48886 359.8943 3136 

 

Part of the conflict detection process is monitored by checking the conflict module input data statistics. 

It is also necessary to check and follow the outputs of the conflict module. This system function was 

divided into two separate tasks, one to grade conflict predictions when they appear and another to 
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follow the conflicts as the scenario develops. Since the separation was not planned in the initial task 

list formation, the final task list contains a total of 58 tasks (described in 1.2.1.4 and D4.4). 

The tasks which grade conflict module predictions functions by performing a “sanity check”, meaning 

it calculates previous and current distance between the aircraft in the pair to determine if they are 

diverging. If the task concludes the aircraft are diverging, no additional checks are performed because 

the prediction is incorrect. If the task determines the aircraft are converging and the predicted conflict 

is indeed possible, then it checks if the predicted distance to conflict point (made for the first aircraft 

in the pair) is similar to the distance that aircraft would cross if it continued flying at its current speed. 

This check might ascertain that the prediction is unrealistic if it requires the aircraft to fly much faster 

than it currently is to reach the conflict point. 

The task meant to continuously check conflict predictions was developed, but a technical issue 

concerning SPARQL queries prevented its completion and testing. It was meant to store all conflict 

predictions to a single output graph and then access that graph to check i) what is the actual distance 

between the aircraft, ii) if the ATCO has made any changes to either aircraft trajectory. The actual 

distances would be updated until the aircraft start diverging and then compared to the predicted 

minimal distance. The task would also consider ATCO actions which could affect the accuracy of the 

original prediction. The difficulty with performing the task was not in the task Java class, which was 

completed, but in the inability of SPARQL queries to update the value of current distance in each 

timestamp. Because of time constraints, this problem was not solved, and the task was left 

uncompleted. Checking the predictions of the conflict prediction module is thus performed by the two 

other tasks. 

1.2.1.4 Automated Tasks 

The AISA ConOps D2.1 (AISA Consortium, 2020a) offers a list of 57 tasks to be automated, divided into 
11 categories. Table 2 shows that list and includes an additional task and a column to designate the 
status of implementation for each task. 

Table 2: List of AI SA tasks and their automation status 

Task category Task Status 

1. CONFORMANCE 
MANAGEMENT 

1.1. Check that aircraft is climbing/descending towards  
cleared FL 

Completed 

 1.2. Check that aircraft is at cleared FL Completed 

 1.3. Check that aircraft is maintaining FL Completed 

 1.4. Check that aircraft is turning towards/opposite of cleared 
heading 

Completed 

 1.5. Check that aircraft is at cleared heading Completed 

 1.6. Check that aircraft is maintaining current heading (different 
than cleared heading) 

Completed 

 1.7. Check that aircraft is accelerating/decelerating towards 
cleared speed 

Completed 

 1.8. Check that aircraft is flying at cleared speed Completed 
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 1.9. Check that aircraft is maintaining current speed (different 
than cleared speed) 

Completed 

 1.10. Check that aircraft is flying towards cleared point Completed 

 1.11. Check that aircraft is at cleared point Completed 

 1.12. Check that aircraft current ROC/ROD is lower/higher than 
cleared 

Completed 

 1.13. Check that aircraft is maintaining cleared ROC/ROD Completed 

 1.14. Check that aircraft is increasing/decreasing towards cleared 
ROC/ROD 

Completed 

 1.15. Check that aircraft is following the 3D trajectory Completed 

 1.16. Check is the deviation from 3D trajectory is within 
tolerance 

Completed 

 1.17. Check that aircraft is following the 4D trajectory Not completed 

 1.18. Check is the deviation from 4D trajectory is within 
tolerance 

Not completed 

2. DETECT INCOMING 
PLANNED FLIGHTS 

2.1. Check that aircraft is close to sector boundary Completed 

 2.2. Check that aircraft is approaching sector boundary Completed 

 2.3.  Check that aircraft altitude is within the altitude band of the 
sector 

Completed 

 2.4. Check that aircraft altitude is approaching the sector altitude Completed 

3. ASSUME, IDENTIFY, 
AND CONFIRM FLIGHT 

3.1. Check that aircraft is incoming Completed 

 3.2. Check that aircraft is planned Completed 

 3.3. Check that aircraft has sent the initial call (via datalink) Completed 

 3.4. Confirm that aircraft can be assumed Not completed 

4. ASSESS IF EXIT 
CONDITIONS ARE MET 

4.1. Check that aircraft is flying towards the exit point Completed 

 4.2. Check that aircraft will reach the exit point on  
the required FL 

Completed 

 4.3. Check that aircraft will reach the exit point at the expected 
time 

Not completed 

5. CONFLICT 
MANAGEMENT 

5.1. Check all aircraft pairs for conflict (ML module) Completed 

 5.2. Check plausibility of the predicted conflicts Completed 

 5.3. Check which conflicts are to occur within the sector Completed 

 5.4. Rank conflicts based on urgency Completed 

 5.5. Check conflict module inputs against training data Completed 
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6. EXECUTE 
AIRCRAFT’S PLAN 

6.1. Detect aircraft that have to climb/descend to requested FL Completed 

 6.2. Detect aircraft that have to climb/descend to exit FL Completed 

 6.3. Detect aircraft that will reach top of descent within the 
sector (ML module) 

Not completed 

 6.4. Detect if planned trajectory passes through restricted 
airspace 

Completed 

7. TRANSFER 
AIRCRAFT 

7.1. Check which aircraft need to be transferred Completed 

 7.2. Check if change of frequency is issued to aircraft (via 
datalink) 

Completed 

 7.3. Change aircraft status to transferred Completed 

8. MAXIMISE QUALITY 
OF SERVICE 

8.1. Detect direct-to candidates Completed 

 8.2. Determine military airspace availability Completed 

 8.3. Check suggestion for shortened RBT Not completed 

9. WORKLOAD 
MONITORING 

9.1. Track current number of assumed aircraft Completed 

 9.2. Track number of conflicts and potential conflicts Completed 

 9.3. Determine future number of sector entries Completed 

 9.4. Determine sector air traffic complexity (ML module) Not completed 

 9.5. Determine plausibility of traffic complexity assessment Not completed 

10. IDENTIFY MISSING 
INFORMATION 

10.1. Identify aircraft with possible equipment degradation Completed 

 10.2. Check situation at destination airport Completed 

 10.3. Check situation at alternate airports Completed 

 10.4. Monitor adverse weather areas Completed 

 10.5. Monitor restricted airspace Completed 

 10.6. Infer missing information Not completed 

11. MONITOR STATUS 
OF ATC SUB-SYSTEMS 

11.1. Monitor performance of ATC conflict detection module Not completed 

 11.2. Monitor performance of complexity assessment module Not completed 

 11.3. Monitor performance of trajectory prediction module Not completed 

 

As mentioned in the machine learning module section, the separation of conflict prediction assessment 
functions into two tasks resulted in an additional task – task 5.5. With that in mind, 46 out of 57 total 
tasks (~81%) were completed and tested. The small subset of tasks which were not completed is 
comprised mostly of machine learning module-related tasks. The rest are miscellaneous tasks which 

https://www.sesarju.eu/


DELIVERABLE 5.2 
REPORT ON HUMAN-MACHINE DISTRIBUTED SITUATION AWARENESS 
 

 

  
 

Page I 29 
 

  

 

had proven too complex to define and code, given the time constraints of the project, and should be 
revisited later. 

Each task consists of SPARQL queries which access the flight data stored in the KG and functions which 
use rule-based knowledge to connect the current traffic situation parameters with appropriate 
outputs. More information on task creation and SPARQL queries can be found in D4.4 (AISA 
Consortium, 2021e). Since tasks range from simple to complex (e.g., checking if the aircraft is at cleared 
flight level vs checking if aircraft trajectories pass through military airspace while its active), number 
of SPARQL queries and task functions may differ. Auxiliary functions were collected in a single Java 
class and added to the KG system class hierarchy, which enabled their use in multiple tasks without 
repeating the code multiple times. 

1.2.1.5 AISA System Operation 

The AI SA KG system works by first erasing the contents of the KG (to avoid mixing with previously used 
data), initialising tasks, loading the RDF graph with the static data to the KG, and then looping through 
the following steps: 

1. loading a single dynamic data graph to the KG, 
2. running all selected tasks and storing outputs in graph form to the KG, 
3. (optional) retrieving, filtering, and printing outputs. 

The dynamic data graphs are loaded in ascending order, starting with g0. As already described, this 
represents the evolution through the timeline of the exercise. Since some tasks require data or results 
from the previous timestep, they are not performed for g0 or in instances when a flight first appears 
(if it is not present in g0). No additional coding is required for this – SPARQL queries simply return 
nothing if some part of the query cannot be completed, and thus no outputs are generated by the task 
functions. 

An additional piece of code was added at the beginning and the end of the loop to store the 
beginning/end times – their difference shows how long each loop (the processing of 1 graph) took. The 
same was later done to calculate the full runtime for each exercise, which also enables the calculation 
of runtime per graph. 

1.2.2 Motivation 

The main reason AISA was founded was to determine whether it is possible to combine human and 
machine situational awareness in a way that they complement each other and create a distributed 
situation awareness. In a world of increasing automation, the contribution of AI SA would be to 
automate certain monitoring tasks in en-route operations. It is important that this narrow and specific 
scope, which requires major reliability, can depend on transparency and the generalisation of the 
system used. 

Unlike machine learning systems (e.g., deep neural networks) that basically function as a black box, a 
reasoning engine is capable of explaining the results it provides and how it obtained them. Another 
novelty that this system brings into ATC is the possibility to check results obtained from ML systems 
for inconsistencies and improbable results. This correlates closely to the way a human determines 
whether something is faulty or not. 
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An artificially intelligent system with situation awareness has the purpose of increasing safety by 
essentially bringing an additional safety net into the equation. It will also serve as another team 
member that is constantly and consistently observing the situation and can be relied upon to improve 
team situational awareness. The system performs all those tedious monitoring tasks that take away 
the ATCO’s time and attention capacity, and it does so with high reliability. It is aware of the situation 
at hand, in its own way, and its state which allows it to be a part of the team and team situation 
awareness. One of the main benefits that arises with implementation of such a system is its 
interoperability which is a by-product of KG usage for the purpose of data management. AI SA also has 
great potential to increase sector capacity since the automation of some monitoring tasks enables the 
introduction of other automation systems which will alleviate ATCO’s workload as well. 

1.2.3 Object of Investigation 

The goal of the studies conducted and presented in this report is to evaluate the capability of the AI 
SA system to gain situation awareness for en-route air traffic monitoring tasks and to explore its 
contribution to shared situation awareness and human performance. Two human-in-the-loop 
experiments were conducted with the proof-of-concept AI SA system that analyse how ATCOs build 
situation awareness and investigate the comparability and compatibility of artificial situation 
awareness to human situation awareness. The experiments evaluated the adequacy of the AI SA 
system’s concept to accomplish monitoring tasks and investigated how – from the point of 
viewparticipating ATCOs –it can be improved. They also laid the basis for further simulations that 
quantify the accuracy of the AI SA system’s predictions and estimations. 

1.2.4 Stages of Implementation of the AI SA System 

Note that two stages of the AI SA system implementation were available at different times of the 
evaluation. They are called stage I and II and differ in the number of tasks implemented for monitoring 
en-route air traffic.  

• Stage I implementation was in use at the time of experiment 2 in January 2022 and had 8 tasks 
implemented. AI SA system outputs had to be filtered by hand to be provided as AI SA inputs 
to ATCOs in experiment 2. 

• Stage II implementation was accomplished in April 2022, where the AI SA system reached the 
project-level scope of implementation comprising 46 tasks for en-route air traffic monitoring. 
Stage II implementation of AI SA system is tested in simulations based on the experimental 
data from human-in-the-loop simulations to quantify the accuracy of estimations and 
predictions of the AI SA system.  

Results on the comparison of query outputs by AI SA and answers from the ATCOs to the same queries 
as well as ATCOs’ judgements regarding the usefulness of AI SA inputs are related to an early stage of 
implementation of the AI SA system. 
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1.3 Research Questions 

Research questions and later the results are grouped according to topical sections. A chronological 
order is inherent to this structure in respect to the stages of implementation of the AI SA system (see 
1.2.4) that had been investigated. 

1.3.1 Human Situation Awareness 

A first group of question is dedicated to characterising ATCO situation awareness and address 
methodological aspects of measuring human situation awareness.  

Question 1.1: What characterises ATCOs’ scanning patterns and priorities?  

For this purpose, scanning characteristics of ATCOs with “preserved” situation awareness were 
compared to ATCOs with “degraded” situation awareness by means of gaze analysis using eye-tracking 
data concerning aspects for situation awareness. 

Question 1.2: Are different measures for situation awareness (self-ratings, queries, gaze-based 
analysis, and implicit measurements) significantly interrelated according to their meaning?  

A moderate intercorrelation is expected among the different measures for ATCO situation awareness 
from literature. For this purpose, a score was assigned to each method (overall SASHA_Q score across 
all subscales; overall score for SASHA_L for different queries; score based on speed, accuracy and time 
aspects for gaze analysis and implicit performance measures (e.g., dwell time, time of conflict 
detection, conflict solutions) (see 3.8.5). For these scores intercorrelations were calculated with 
Pearson’s r correlation. 

1.3.2 Human Compared to Artificial Situation Awareness 

Human and artificial situation awareness were compared regarding correctness and 
comprehensiveness. This was done with an early stage of implementation of the AI situation 
awareness system (stage I) (see 1.2.4).  

Question 2.1: Are artificial and ATCO situation awareness comparable?  

This question was investigated by comparing ATCO and AI SA system answers to identical queries about 
specific aspects of the situation across different scenarios of experiment 2.  

Question 2.2: Can the AI SA system provide inputs to situation awareness that ATCOs were not aware 
of? 

Based on the comparison of ATCO answers and AI SA system outputs it is investigated if machine 
situation awareness can provide information to ATCOs that they are not aware of in terms of explicitly 
named in their answers to the queries.  
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1.3.3 Human-Machine Team Situation Awareness and Human Performance 

Is human-machine team situation awareness beneficial for human performance? How do ATCOs react 
to AI SA inputs for shared situation awareness. This is investigated with a comparison of objective 
performance across two work conditions (“with” and “without AI SA input”) and by means of ATCOs’ 
subjective judgements of AI SA inputs. As with research question on Human Compared to Artificial 
Situation Awareness (1.3.2) investigations were done with an early stage of implementation of the AI 
situation awareness system (stage I).  

Question 3.1: Is human performance enhanced by adding machine situation awareness? 

To address this question implicit performance measure for ATCO situation awareness was used (time 
to detect conflict) was compared across the conditions “without AI SA inputs” (experiment 1) and “with 
AI SA inputs” (experiment 2). 

Question 3.2: Do ATCOs evaluate artificial situation awareness inputs as useful and trustworthy 
contribution to human-machine team situation awareness? 

Question 3.3: Do ATCOs use artificial situation awareness inputs for their situation awareness and 
decision making?  

To answer these question ATCOS’ judgements for each AI SA input provided at the end of a scenario 
were analysed for each AI SA input in all scenarios of experiment 2. 

1.3.4 Accuracy of Artificial Situation Awareness 

Is the AI situation awareness system based on a KG system and associated machine learning modules 
capable of accomplishing the assigned tasks for en-route air traffic monitoring in an accurate, 
comprehensible (transparent) and generalisable manner? For the analyses of the questions concerning 
accuracy of artificial situation awareness the project level of implementation for AI situation awareness 
system (stage II) is used (see 1.2.4).  

Question 4.1: Can the monitoring tasks be applied to the KG to achieve situational awareness? 

To answer this question, a list of objective requirements for situational awareness was made. The 
outputs of the tasks were analysed to check if all requirements were fulfilled, and no faulty conclusions 
were made. To check for generalisability, the accuracy of the results was compared across different 
scenarios. 

Question 4.2: Does the CD machine learning module provide accurate results regarding situations of 
interest? 

To answer this question, the initial and final predicted minimum distance and time to minimum 
distance were compared to the actual measured values. The initial predictions were observed before 
any clearances by the ATCOs were issued. For example, the first time the conflict detection ML module 
makes a prediction about two aircraft which did not receive any ATCO input by that moment is an 
initial prediction.  After all ATCO clearances were made, and no further changes to the trajectories 
were done, the final predictions were observed.  
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Question 4.3: Does the CD machine learning module provide accurate results regarding conflicts? 

This question extends the previous one. To compare how accurate is the CD ML module regarding only 

traffic that would violate separation minima, ML module predictions are compared with the ATCO 

recognition and resolution of conflict. It was also observed if the ML module predicted distances 

correspond to the distances after ATCO issued resolution actions e.g., does the CD module predicted 

distance increase after ATCO have issued clearance which resolves the conflict? 

Question 4.4: Does the AI SA system check the status of its sub-systems? 

Tasks were developed to assure the AI SA system can detect how the actual traffic data compares to 
the training data of the CD ML module and the validity of that module’s predictions. This enables the 
system to have a degree of self-awareness.  

1.3.5 Summary of Research Questions 

Category Research Question Section 

Human Situation Awareness 

Q.1.1. What characterises ATCOs’ 
scanning patterns and priorities? 

4.1.3.2 Comparison of ATCO 
Groups for Gaze-Based Analysis of  

Q.1.2. Are different measures for  
situation awareness (self-ratings, 
queries, gaze-based analysis, and 
implicit measurements) 
significantly interrelated according 
to their meaning? 

4.1.2 Correlational Results on 
Situation Awareness Measurement 
Methods 

Human Compared to  
Artificial Situation Awareness 

Q.2.1. Are artificial and ATCO 
situation awareness comparable? 

4.2 Results on Comparison of 
Human and Machine Situation 
Awareness 

Q.2.2. Can the AI SA system 
provide inputs to situation 
awareness that ATCOs were not 
aware of? 

4.2 Results on Comparison of 
Human and Machine Situation 
Awareness 

Human-Machine Team  
Situation Awareness  
and Human Performance 

Q.3.1. Is human performance 
enhanced by adding machine 
situation awareness? 

4.3.1 Evaluation of ATCO’s 
Performance Based on Behavioural 
Coding 

Q.3.2. Do ATCOs evaluate AI SA 
inputs as useful and trustworthy 
contribution to human-machine 
team situation awareness? 

4.3.2 Evaluation of Artificial 
Situation Awareness Based on 
Questionnaire Answers 

Q.3.3 Do ATCOs use AI SA inputs 
for their situation awareness and 
decision making? 

4.3.2 Evaluation of Artificial 
Situation Awareness Based on 
Questionnaire Answers 
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Accuracy of Artificial  
Situation Awareness 

Q.4.1. Can the monitoring tasks be 
applied to the KG to achieve 
situational awareness? 

4.4.1 Results of Knowledge Graph 
and Task Analysis 

Q.4.2. Does the CD machine 
learning module provide accurate 
results regarding situations of 
interest? 

4.4.2 Results on Conflict Detection 
ML Module Predictions Analysis 
Regarding Situations of Interest 

Q.4.3. Does the CD machine 
learning module provide accurate 
results regarding conflicts? 

4.4.3 Results on Conflict Detection 
ML Module Predictions Analysis 
Regarding Conflicts 

Q.4.4. Does the AI SA system check 
the status of its sub-systems? 

4.5 Results on AI SA System 
Performance 
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2 Theory 

This chapter provides the theoretical background for human and machine situation awareness and 
outlines a conception for distributed human-machine team situation awareness. 

The term situation awareness is often used in ergonomic research, operational and training practice. 
It describes how people, but also entire socio-technical systems, become and remain coupled to the 
dynamics of their environment (Stanton et al., 2017). Human situation awareness corresponds to an 
internalised mental model of the current state of environment that is used to base decisions on, take 
necessary actions, and/or adapt plans, and from which projections to the future are made. The 
selection and amount of information perceived and processed to build and maintain situation 
awareness depend on the salience of external cues, the relevance of information for task 
accomplishment and the availability of prior knowledge in long-term memory. Humans have to 
recognise or remember what is important for the task at hand. They have to know what, where and 
when to look for information. At a higher level of skill progress, people know subtle signals that are 
meaningful for successful regulation of action control. Workload obviously is an important factor for 
human situation awareness, as multiple competing tasks limit cognitive resources available for 
updating the mental image of the situation und for anticipating future demands to adapt to. 

In comparison to this machine situation awareness is generated in a more comprehensive manner of 
information processing: All available information gets considered in processing and all queries for 
relevant issues (e.g. non-conformance, conflict detection and prediction etc.) are verified. The 
capability of artificial situation awareness to accomplish monitoring tasks depends on the 
implemented tasks to be accomplished in processing, and on the available information. Products of 
data processing can get stored and used for later purpose. The correctness of estimations and 
predictions can be ensured by plausibility checks on the input data and outputs.  

A loss of situation awareness may result in human error – for instance, if an ATCO does not notice a 
pilot’s non-conformance with a speed limitation. Consequently, this may lead to a steady reduction of 
separation and a lack of necessary countermeasures to ensure safe separation distance. In the cockpit, 
checklists support monitoring and control actions in all phases of flight. They support pilots’ adequate 
situation awareness and completion of important action steps. This approach, however, is not 
applicable to ATC to the same extent. Guidelines for dealing with unusual and emergency situations in 
ATC exist. But the dynamic nature of air traffic prevents a high level of standardisation in ATC that goes 
beyond the use of standard phraseology in radio communication. Therefore, scanning techniques 
represent an important element to ensure adequate situation awareness.  

How do ATCOs make sure they do not miss important information? Attention may get absorbed by 
tasks or may be focused exclusively on one problem, while diminishing the capability to overview the 
whole situation. To support ATCOs in their situation awareness machine situation awareness might be 
a useful complement and beneficial for safety and efficiency in future ATC and it might allow for more 
automation to keep ATCOs’ workload at a manageable level.  

To achieve distributed human-machine team situation awareness presupposes that machine and 
human situation awareness are compatible and complement each other. How does the output of 
machine situation awareness need to be designed and timed that it effectively supports human 
situation awareness without creating unjustifiable additional workload to ATCOs? Although this aspect 
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is out of the scope of the exploratory research of an AI-based machine situation awareness in the AISA 
project, this aspect is key to the effectiveness of any human-machine team situation awareness.  

The combination of human and machine situation awareness provides redundancy to monitoring 
tasks. To achieve a diverse redundancy capable for effective countermeasure against loss of situation 
awareness due to lacking or flawed information would further require that human and machine 
situation awareness were fed by different, independent sources of information.  

2.1 Human Situation Awareness 

Situation awareness is defined as “the perception of the elements in the environment within a volume 
of time and space, the comprehension of their meaning and the projection of their status in the near 
future” (Endsley, 1988, p. 97). It is composed of the levels perception, interpretation of the perceived 
information, and anticipation how the situation will change in future (Endsley, 1995b). To avoid 
confusion with the levels of awareness an AI-based system can achieve (Jantsch & Tammemäe, 2014a) 
described in Section 2.2.3, the situation awareness levels will be called Endsley’s levels of situation 
awareness. 

Situation awareness (SA) can be thought of as an internalised mental model of the current state of the 
operator's environment. All incoming data from the many systems, the outside environment, fellow 
team members, and others must all be brought together into an integrated whole. This integrated 
picture forms the central organising feature from which all decision-making and action takes place” 
(Endsley, 2006, p. 528). The concept includes both aspects of the process of gaining situation 
awareness and the resulting product–a state of awareness–that will initiate further search for 
information or reasoning to extract meaning or to project to the future.  

Situation awareness places high demands on mental resources and processing. The conscious analysis 
of a problem or the situation at hand and the direction of attention necessary for that purpose are 
executive functions performed by the working memory. With experience, elements of situation 
awareness become part of schemas and mental models in long-term memory. This allows for top-
down processing of information that is less demanding on mental resources as it replaces bottom-up 
processing of external information by recognition from memory. Fast recognition of familiar situations 
and reliance on routines free mental capacity. Mental processing for the development of situation 
awareness and for the control of actions is substituted by a domain-specific, hierarchically organised 
repertoire of “if-then-procedures” for familiar tasks and situations. This has been identified as 
recognition-primed decision-making, a characteristic of experts working in their context of naturalistic 
decision making (Zsambok & Klein, 1997). Consequently, and relevant for the measurement of 
situation awareness: Not all aspects of situation awareness need to be conscious, nor do aspects need 
to be persistently kept in mind. Some information is externally accessible and does not load memory 
(Durso & Sethumadhavan, 2008). And it can immediately trigger contents from long-term memory that 
offer possible interpretations for the situation and future states and outcomes from experience. In 
addition, the knowledge about relevant situations is connected to solutions that proved to be 
adequate for those situations (‘if-then productions’ that specify when a (cognitive) act should take 
place; Anderson, 1982). Based on these capabilities humans can make quick and effective decisions in 
complex situations that would otherwise overload the capacity for mental processing.  

Situation awareness is the nub of the matter for adaptation to situation requirements and chose 
adequate control strategies and problem solutions (Haeusler et al., 2012). It is justified to emphasise 
on this aspect of human and system performance, even if the theoretical concept of situation 
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awareness has faced considerable criticism (e.g., Dekker, 2015; Flach, 1995). The following chapter 
addresses different facets of the concept situation awareness, including shared or team situation 
awareness.  

2.1.1 Aspects of Situation Awareness Concept 

This chapter explains important aspect of human situation awareness. For each aspect that is outlined 
below, the last paragraph explains how the topic is related to ATCOs’ work and reflects on how ATCOs 
could be supported be machine situation awareness.  

Forming an adequate mental picture on what is happening and what could be in future is based on 
processes on the level of perception, interpretation, and projection (Endsley, 1988). For example, if an 
ATCO notices that two aircraft are on the same altitude, this corresponds to level 1 situation awareness 
– the perception. If the ATCO gets aware that this causes a conflict, because these aircraft have crossing 
flight paths, that represents level 2 situation awareness about the comprehension of the meaning in 
relation to the goals. Being able to anticipate the future positions of aircraft and figuring out the 
remaining distance and time until minimum separation will be lost, if aircraft continue on the present 
heading and altitude, is an example of level 3 situation awareness–projection.  

2.1.1.1 Endsley’s Level 1 Situation Awareness: Perception 

Perception is about encoding information from the outer world to become consciousness about them. 
Directing and focusing attention on task-relevant aspects is key to human perception, as bottlenecks 
limit the overall capacity for attention and hence the amount of information and speed of processing 
(Matthews et al., 2000). This is emphasised by Jones’ and Endsley’s (1996) findings that the majority 
(76%) of situation awareness errors of pilots occur on the level of perception. Information processing 
is improved, if information is presented in different modalities, as they then may be processed in 
parallel (Wickens, 2002). Different attentional sources exist for different modalities of the senses 
(Wickens, 1984). Limited attention is a challenge for information intake and situation awareness that 
might be mitigated with machine situation awareness. 

For skilful performance, novices need to learn subtle signals that convey highly relevant information 
about for situation awareness. Instruction on effective scanning techniques (e.g., Palma Fraga & Kang, 
2021). Lack of cue salience can decrease scanning performance, but can be compensated partially by 
ensuring sufficient knowledge is provided in training for appropriate scanning (Schaninger & Hofer, 
2004).  

Challenges for situation awareness on the level of perception are rooted in the selectivity in attention. 
Goals are an important mean to direct information to relevant aspects of the situation for task 
accomplishment. This might lead to inattentional blindness, when important information gets ignored, 
when it does not fit into the focus of attention, even if it is readily available. 

On the situation awareness level of perception ATCOs need to extract information from labels attached 
to aircraft that are moving on the radar and take up information from radio communication with pilots. 
The labels themselves are constantly moving and the information within the labels may change. 
Attention plays an important role in perception. Because attention capacity is limited, not all 
information can be taken up. Prioritisation and direction of attention are therefore important. Expert 
ATCOs can easily filter out irrelevant information and focus quickly on the most important. Machine 
situation awareness can be used to ensure that vital information does not get missed. However, it is 
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required to have adequate filtering to notify only about relevant aspects for maintaining adequate 
situation awareness. That way machine situation awareness can mitigate the threats of workload, 
attention fixation and tunnel vision, distraction, and fatigue to degrade ATCO situation awareness.  

2.1.1.2 Endsley’s Level 2 Situation Awareness: Interpretation 

On a second level interpretation of the gathered information is accomplished. The meaning and 
significance of information need to be recognised considering the task to be performed and in the 
specific context of operation. This process is enhanced by top-down processing of information that is 
stored in and retrieved from memory as activation in neural networks. In ATC multiple pieces of 
information and their interactions need to be considered (e.g. differences in aircraft speed and the 
resulting reduction of separation) and integrated to make an appropriate decision and perform well. 
Jones and Endsley (1996) found that 20% of the situation awareness errors of pilots occurred on this 
level.  

On the situation awareness level of interpretation experienced ATCOs can immediately recognise the 
situation upon single and mostly subtle cues of the situation. They generate expectations. In contrast, 
novices need to process the information they perceived to infer the meaning. Due to their experience 
and routine, expert ATCOs possess more refined mental models and a broad repertoire of schemas 
about situations that may occur. Developing a correct understanding of the available information can 
sometimes still be challenging. Automation tools can help interpretating information and issuing alerts, 
when the situation is critical. Examples are Short-Term Conflict Detection (STCD) or Medium-Term 
Conflict Detection (MTCD) for ATCOs or Boeing’s Engine Indication and Crew Alerting System (EICAS) 
or Airbus’ Electronic Centralised Aircraft Monitoring (ECAM) for pilots. The capability of machine 
learning technology to recognise patterns might offer ATCOs support in interpreting information about 
complex processes regarding air traffic monitoring tasks (e.g., options to optimise service for pilots). It 
might offer a second opinion or help novice ATCOs with insufficiently developed mental models. Or it 
might prevent expert ATCOs form overreliance on mental models. However, for distributed human-
machine team situation awareness to be useful, it would be necessary that the plausibility of the ML 
inferences can be checked and that underlying assumptions can be traced back (comprehensibility and 
transparency). 

2.1.1.3 Endsley’s Level 3 Situation Awareness: Projection 

Level three situation awareness is the projection of current trends to the future to foresee what might 
come and what could change. Jones and Endsley (1996) found that 4% of situation awareness errors 
that pilots committed occurred on that level. This requires mental simulation and inferential reasoning. 

Mental simulations as well as other processes involved in storing, integrating, and maintaining the 
current internalised mental mode up to date rely on working memory. Its capacity is limited to  
7 plus/minus 2 chunks (Miller, 1956). A single junk can integrate a great amount of information if it is 
organised by meaningful associations. For reasons of manageability, the number of “system elements” 
should not exceed seven in system design. However, under stress, working memory capacity gets 
further reduced (Luethi et al., 2009). If capacity limit is exceeded, critical information can be forgotten 
or wrongly remembered and integration of information in situation awareness level 2 and 3 can fail. 
Cowan conceptualises working memory in his model of cognition as an activated subset of long-term 
memory (1988). Especially novices are affected by working memory limitations in their situation 
awareness, while experts rely more strongly on their long-term-memory for situation awareness (Sohn 
& Doane, 2004).  
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Schemas and mental models1 are elements of long-term memory that substitute working memory 
processes for interpretation and projection of information. They direct attention to critical cues, 
provide expectations and interpretations and advise on appropriate actions as a single-step connection 
(Endsley, 1995c), what Anderson called “if-then productions” (1982). Experts have learnt highly 
detailed classifications for relevant situations. Their superior memory stores allow sophisticated 
understanding of critical cues and more precise situation awareness. They spend ongoing active effort 
to project likely or high consequence events and create contingency plans to avoid or quickly deal with 
possible negative events (Endsley, 2018).  

Top-down goal-driven processing of information enhances the efficiency of information processing for 
situation awareness, as the information is prioritised according to goals and criticality. It operates in 
close interaction with bottom-up processing in which salient cues activate appropriate goals and 
models. This interplay allows attention to focus on information relevant for the task at hand and the 
choice of a suitable strategy. This selectivity in human awareness for information might be challenging 
to incorporate in human-artificial team situation awareness. Human beings by nature need to focus 
and switch focus in the service of the task they are accomplishing. Bringing in additional information 
(machine situation awareness) must consider the human need to focus and stay focused. 

Level 2 and 3 situation awareness provide expectations about what information needs to be looked 
for, when, and where. They drive attention to information cues (level 1 situation awareness) that serve 
to confirm or deny expectations on situation awareness level 2 and 3. That way, understanding drives 
attention and perception (top-down) and perception (re-)shapes understanding (bottom-up). 
However, preconceptions may lead to situation awareness level 2 errors. And confirmation bias –  
a tendency to exclusively look for information confirming one’s expectations – may inhibit maintaining 
an accurate situation awareness. This can be a trap for experienced ATCOs and lead to professional 
blindness. Characteristics of long-term memory of experts allow for more differentiated 
categorisations of the information perceived.  

On the situation awareness level of interpretation expert ATCOs have expectations from experience 
stored in long-term memory. To project from the current situation to the future is a challenging task 
with regard to a three-dimensional space with multiple aircraft and environmental dynamics (e.g., 
airspace availability, weather etc.). ATCOs accomplish this task with 2D radar screen and their mental 
models. As the entire system is very dynamic, the ATCOs need to reassess the situation regularly to 
detect changes, to recognise impacts on the future and to decide on necessary actions or change of 
plans. Machine situation awareness could protect expert ATCOs from degraded situation awareness 
due to anchoring effects by their experience and confirmation bias, that lead people to miss important 
information that would be available to them but does not fit into their expectations. ATCOs could use 
machine situation awareness to cross-check the validity of their situation awareness. Workload, 
interruptions, and distractions are threats to human situation awareness. Machine situation 
awareness could serve as a backup and as a second opinion. Its pattern recognition is not biased by 
frequency or recency of events, their possible interpretations and future trends as it is the case in 

 

1 Mental models refer to memory structures that contain information about the purpose and form of a system 
(e.g., an aircraft), explanations of system functioning, system states, and predictions of future states (Rouse & 
Morris, 1985), whereas schema are prototypical states of the mental model, e.g. patterns of states of relevant 
system elements for various classes of situation (Endsley, 2018). 
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humans. Availability of memory content for retrieval depends on the frequency and recency of 
exposure.  

2.1.1.4 Shared and Team Situation Awareness 

Team situation awareness is about ensuring that every team member has access to information, 
understanding and anticipation relevant for his or her tasks. Therefore, team situation awareness 
consists of the situation awareness of the individual team members. The term “team” refers to a 
collaborating group of people having shared goals (Brannick & Prince, 1997). Teams foster redundancy 
for safety-critical tasks in terms of quality checks of each other’s work and share task load to keep 
workload at a manageable level. 

Team situation awareness reflects the degree to which every team member possesses the situation 
awareness required for his or her responsibilities (Endsley, 1989) whereas shared situation awareness 
implies a focus on the degree to which team members have the same situation awareness on shared 
situation awareness requirements (Endsley and Jones, 1997). So, team members have distinct and 
overlapping contents of situation awareness. High team performance is expected to result, if each 
team member has good situation awareness on his/her duties and have congruent situation awareness 
on shared situation awareness elements (Endsley & Robertson, 2000). Shu and Furuta (Shu & Furuta, 
2005) promote the aspect of mutual awareness. Also, from the socio-technical system point of view 
there is shared awareness between people and systems they interact with. Even if team members have 
access to the same information, they might have different (unshared) situation awareness due to 
differences in roles, goals, tasks, and experiences (Stanton et al., 2017). To express this the term 
“compatible situation awareness” is used. “Transactive situation awareness” is focused on team 
members’ exchange of situation awareness and thereby acknowledges differences due to individual 
roles and functions that contradict sharedness of situation awareness (Sorensen & Stanton, 2015).  

In ATCO teams–consisting of a radar and a planner controller–the tactical and strategic monitoring 
tasks are distributed among team members. Despite splitting the main tasks and allocating 
responsibilities, both controllers are involved in both types of monitoring. For human-machine team 
situation awareness some information about the situation might be shared (e.g. conflict detection), 
while others might just be compatibility (e.g. ML estimates of traffic complexity vs. individual 
subjective workload).  

Human-machine team situation awareness could offer effective support in developing human 
expertise. With increasing experience and level of skill, ATCOs can reduce the amount of information 
to be perceived and processed by recognition from memory. Research on experts in different domains 
(chess, different sports, aviation, medicine etc.) has found that experts–among other characteristics–
spend much time and effort on the task of situation assessment (Feltovich et al., 1997). Machine 
situation awareness can prevent overreliance on experience by pointing out available information 
relevant for a differentiated situation awareness. In that way ATCOs could develop more differentiated 
mental models for situation awareness in combination with highly adapted solutions for the specific 
situation and task at hand.  

What might be harder to convey in a human-machine team situation awareness are metacognitive 
reflections on the suitability of strategies: for instance, the reasoning about underlying commonalities 
and the uniqueness of situations and the adequacy of a performance strategy. Metacognition is the 
consciousness and control over one’s own thoughts (Flavell, 1979). Metacognition helps relate own 
abilities to situational requirements, it regulates planning and monitoring processes for goal 
achievement, it monitors performance and learning processes, adaptation, and necessary transfer 
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knowledge to solve new problems (Häusler, 2006). Metacognitive skills allow experts to have a highly 
effective, hierarchically organised knowledge structure about classes of tasks and situations connected 
to procedures for task accomplishment adjusted to the specific requirements and to make inferences 
about novel aspects of the task or situation.  

2.1.2 Methods to Measure Situation Awareness 

The most common assessment methods for situation awareness are: (1) subjective rating by the 
participant or a subject matter expert, (2) implicit performance measure, and (3) probe techniques 
(Durso et al., 1999).  

Examples for subjective ratings are 3D SART (Situational Awareness Rating Technique; Taylor, 1990) or 
for ATC context SASHA_Q (Situation Awareness for SHAPE 2 _Questionnaire; Dehn 2008). Implicit 
performance measures disclose the level of awareness about important situational aspects. Probe 
techniques ask questions about the current situation and future development. The technique can be 
applied in two versions: In the freeze technique, simulation is stopped, and the sources of information 
(screen) are blanked. In the online technique, questions about aspects of situation awareness are 
asked while the simulation is continuing. Situation Awareness for SHAPE_Online (SASHA_L; Dehn, 
2008) is an example of this type. While queries with frozen simulation and blanked display is used in 
the Situation Awareness Global Assessment Tool (SAGAT; Endsley, 1995a). Online techniques without 
freezing are considered less intrusive (Salmon et al., 2009), but involve extra workload (Jeannot 2000). 
A variety of examples for measurement tools is summarised by Jeannot et al. (2003).  

The three methods for situation awareness assessment have different strengths and limitations. The 
use of the self-rating techniques is widely spread, as subjects have the most direct access to their own 
awareness. Methodologically however they suffer criterion deficiency, as it is difficult for subjects to 
recognise aspects they have missed, because they are not aware of them (Jeannot et al., 2003). This is 
lowering the validity of self-ratings for the assessment of the degree of situation awareness. They 
represent a measure of the certainty people feel about their situation awareness (Endsley, 1995a) 
(Endsley, 1995a). Implicit assessments of situation awareness from performance represent a non-
intrusive method. However, it is challenging to define adequate performance indicators, because it is 
not entirely clear how situation awareness and performance are related (Salmon et al., 2009) and 
performance may be influenced by other factors that situation awareness, which results in criterion 
contamination. Probe techniques with freezing require subjects to freely recall from memory and 
therefore partially imply a memory test that might not fully be representative of subjects’ situation 
awareness (criterion deficiency). Online techniques are less intrusive for subjects and do not alter the 
“fluency” in performance in simulations. It is a real-time assession of situation awareness with no 
interruption or blanking. But asking queries while a task is performed leads to additional task load and 
may lead to distraction. Considering the advantages and disadvantages of the different techniques, 
combining several techniques to compensate for shortcomings and deficiencies has been 
recommended and chosen in the AISA project.  

  
 

2 SHAPE=Solutions for Human Automation Partnerships in European ATM 

https://www.sesarju.eu/


DELIVERABLE 5.2 
REPORT ON HUMAN-MACHINE DISTRIBUTED SITUATION AWARENESS 
 

 

  
 

Page I 42 
 

  

 

2.1.3 Attention and Gaze Behaviour 

Eye-Tracking is a popular method to analyse visual attention with gaze behaviour. Attention is the 
behavioural and cognitive process of selectively focusing on a particular aspect of information, 
whether it is considered subjective or objective, while ignoring other perceptual information (James 
et al., 1890). It corresponds to the ability to flexibly use computational resources (Lindsay, 2020). In a 
recent publication the usefulness of a unitary construct for attention and the neural system has been 
challenged. “Attention is one of the most misleading and misused terms in the cognitive sciences” 
(Hommel et al., 2019, p. 2288). Alternatively, subsets of processes and mechanisms that lead to task-
specific performance should be investigated separately – acknowledging the interconnected and 
integrative nature of the human sensorimotor information processing systems. Instead of a single 
concept of attention, multiple underlying processes are claimed (Di Lollo, 2018). To single out attention 
from the whole complex of processes is seen as counterproductive to gain a “… comprehensive 
understanding of human behaviour because it ignores integrated, parallel, and reciprocal relationships 
among sensory, cognitive, and action processes” (Hommel et al., 2019, p. 2288). 

For the investigation of situation awareness attention is considered as the capacity needed for 
important information (Endsley, 1988) and the ability to select from a multitude of sensory impressions 
and mental activities and prioritise those necessary for planning and execution of the tasks. Attention 
is needed in monitoring, in communication and in renewing mental models.  

Two concepts are interrelated with attention: alertness and vigilance. Alertness is a precondition for 
attention and is defined as the state of being awake, aware, attentive, and prepared to act or react 
(‘Alertness’, n.d.; APA Dictionary of Psychology). Vigilance is the aspect of sustained attention. It 
“refers to the state in which attention must be maintained over time. Often this is to be found in some 
form of “watchkeeping” activity when an observer, or listener, must continuously monitor a situation 
in which significant, but usually infrequent and unpredictable, events may occur” (Vigilance; n.d.; 
Encyclopedia Britannica). ATCOs need vigilance when watching the radar screen to detect an aircraft 
as soon as possible.  

“Gaze” is described in various disciplines (e.g. sociology, philosophy, psychoanalysis, etc.) as an 
awareness and perception of an object, a group or oneself (Wikipedia, 2022). Gaze behaviour is 
conceptualised as a fixation of gaze on a location in the targeting environment or as a shift in gaze from 
one environmental location to another (Zangmeister & Stark, 1982). Gaze shifts can be initiated by the 
eyes, the head, and the body.  

Eye-trackers offer a method to measure gaze behaviour and visual attention. Gaze behaviour is 
conceptualised as an indicator for attentional prioritisation (Ernst et al., 2020). Indicators most often 
used for gaze analysis are: (relative) frequencies of gaze on Areas of Interest (AOIs), fixations and gaze 
points, heatmaps, time spent focusing (dwell time), average fixation duration, time to first fixation 
(TTFF), first fixation duration, ratios (proportion of participants e.g., missing an AOI), fixation 
sequences, revisits.  

Gaze direction is normally controlled unconsciously. Visual processing and coordination of eye 
movements requires the use of many cortical and subcortical regions of the brain. The focus of 
attention is guided bottom-up by salient visual cues and top-down by the goals, intentions and re-
activated knowledge and expectations. This interplay to search and select task-relevant information is 
highly automated and hence not accessible to consciousness. It may be considered a result of learning 
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history and as an expression of the level of expertise in terms of understanding the complex nature of 
the specific domain and tasks. 

2.1.4 Effects of Workload and Stress on Situation Awareness 

Active information processing requires cognitive resources which are limited for mental operations 
(Kahnemann, 1973). Knowing and applying task strategies that lower the need for mental resources 
are signs of expertise and allow for superior performance and resistance to workload and stress 
(Häusler, 2006). 

Task load corresponds to the level of demand or stress originating from external factors–the task or 
the system (e.g., complexity or time pressure). The resulting strain from the impact of the external 
stressors is called mental workload. The level of workload experienced is subjective and depends on 
individual constitution, resources, abilities or level of experience, and processing style (Cain, 2007; 
International Organization for Standardization, 1991). A change in task load can therefore imply 
different levels of workload. In ATC research task load is often operationalised as the number of 
aircraft: the more aircraft to control, the higher the mental workload (Ahlstrom & Friedmann-Berg, 
2006). 

Increased workload can be compensated by investing more effort, prioritisation of most important 
aspects or/and simplification of the task by an adaptation of strategy. There is evidence that high 
workload leads to poor performance and a higher number of errors. If the demands start to exceed 
the capacity, skilled operators either adjust their strategy or performance starts to degrade (Young et 
al., 2015). Skilled ATCOs adapt their strategies with increasing task load to prevent exhaustion of 
mental resources: They prioritise more strongly and simplify the information processing involved in 
handling aircraft (more standardised) and thereby save mental resources (Sperandio, 1978).  

Workload can be assessed using subjective rating scale (e.g., NASA Task Load Index (TLX); Hart & 
Staveland, 1988), with a secondary task approach or with psychophysiological methods. Latter offer 
an interesting access to contemplate workload as they assess physiological functioning and reactions 
to task load in a non-invasive way. They are used in engineering psychophysiology to address questions 
and problems of engineering psychology through scientific study of human interactions with 
technology. Psychophysiology is the study of the interrelationships between mind and body (Schell & 
Dawson, 2001). Typical psychophysiological measures are heart rate, skin conductance, and skeletal 
muscle activity. They capture states of arousal and emotion, represent cognitive processes, and are 
used to analyse behaviour.  

Backs and Boucsein (2000) suggest a general framework that integrates physiological reactions and 
clarifies their relations to demands, processes, reactions, and outcomes. Demands may be task-
related, emotional, or physical. They call for cognitive, affective, and energetic processes to react to 
the demands. The reactions that result from processes can be measured on the behavioural, 
subjective, and physiological level and lead to outcomes such as productivity, well-being, health, 
motivation, skill, and expertise.  

From physiological reactions measured inferences are made about the state of the subject. The state 
is the result of many physiological and psychological reactions to task demands or environmental 
stressors. Those reactions regulate the brain and the body and serve the goal of enabling optimal 
accomplishment of the demands from the work environment. For instance, a discharge of adrenaline 
increases blood pressure, pulse, skin conductance and muscular activity; it puts the organism on alert 
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and raises the body’s readiness to perform. On a generalised level, physiological indicators provide 
information on how difficult it is for a subject to fulfil a task compared to his/her relative baseline in a 
relaxed state (Friedrich et al., 2018).  

The transition of psychophysiological methods from the laboratory to operational environments is still 
challenging. A multitude of variables may influence psychological reactions, and artefacts in 
measurements arise from interferences induced by body movements or changes in breathing rate 
during verbal expression with impact for psychophysiological parameters.  

2.2 AI and Machine Situation Awareness 

The capture of human intelligence is a complex endeavour that started 150 years ago and is still 

ongoing–differentiating new factors of intelligence and measuring the world of thought with high-tech 

methods. AI technology is providing intelligence to systems, mimicking human reasoning and inference 

for different cognitive tasks. The following chapters provide a brief overview on automation and 

machine learning.  

2.2.1 Automation and Monitoring 

Automation refers to a wide range of technologies that reduce human intervention in processes. They 
are reduced by defining decision criteria, sub-process relationships and associated actions in advance 
and having them executed by machines. For that control systems, machines and information 
technology is used to increase productivity (Groover, 2019).  

Monitoring is the observation and check of a system, quality, or progress over a period of time to 
notice unexpected behaviour. Therefore, automation in a monitoring context means that the 
automation software/machine is allowed to react to inconsistencies, either by fixing them itself or by 
alerting an authority or system. 

A lot of automation can be found in ATC. It should provide ATCOs with early and accurate information, 
help to increase visibility at airports and improve communication with pilots. It is widely used in 
navigation, communication, and surveillance tools, to support the ATCOs. 

It is used in: 

• Short-term conflict alert system: automated warnings are used to let the tower ATCO know 
when an aircraft is heading to a runway which is already occupied  

• Remote digital towers: automation is used to transmit data to different control centres, and it 
also enables that data of an aircraft can be expanded with further information on the screen 

• Crossing detection tool: automation detects and warns the ATCO of conflicts 

• Routes: automation is used to check route clearance and to find the most efficient one 

• Tracking: digital tracking methods are progressively replacing flight progress strips. Therefore, 
telephone conversation is now automated, which is reducing workload and increasing ATCOs’ 
capacity 

• Time-based separation procedures for aircraft: computer-generated indicators are projected 
on radar during approach to provide ATCO with better guidance on minimum separation limits. 
This also results in more efficiency of approach handling and thus less delays and cancellations 
occur 
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• NextGen program (automation system) (Darr et al., 2008): Standard Terminal Automation and 
Replacement System (STARS) & En-Route Automation Modernisation (ERAM): enhanced 
tracking of aircraft though automatic dependent surveillance-broadcast systems and data 
block feature (automatically lists the number of aircraft in airspace) 

Automation brings a lot of benefits, but also some disadvantages. The biggest problem is the possibility 
of failure, which is why it is especially important that the operators get notified when it has 
malfunctions, and that ATCOs are aware that it can happen. Furthermore, ATCOs should be trained on 
new automation tools and there should be options if the systems fail. This plays a significant role, 
especially with remote towers (Durso & Manning, 2008). 

2.2.2 Machine Learning 

Machine learning (ML) is a subset of artificial intelligence, aimed at automated model building. Created 
models/algorithms solve tasks by establishing relationships between input and output data, which can 
then be applied to new data to generate predictions. The established relationships are not known to 
the user but are contained in the system, usually in a form unclear to humans. For this reason, ML 
systems are often regarded as “black boxes” when discussing the mechanism by which they generate 
predictions. 

Since ML systems use data to both “learn” how to accomplish a task and to generate new predictions, 
a distinction must be made between the data groups: 

• Training data, used by the system to learn how to solve a task 

• Validation data, used to tune the parameters of the model 

• Test data, used to get an evaluation of the final model (also called holdout data, if it has not 
been used for training the model) 

Choice of data for the model creation process will influence the final model, so care must be taken to 
avoid common problems such as overfitting – creating an overly complex model which fits the training 
data perfectly – or bias – where the model notices unconscious biases present in the dataset. These 
problems must be accounted for during the development of the model. Other checks are available for 
the execution phase – for example, metadata of the testing dataset used for the conflict detection ML 
module was added to the knowledge graph to serve as a preliminary check for the operation of that 
module. 

 

2.2.3 Machine Situation Awareness 

It is challenging to capture human intelligence and integrate it into AI. It is also difficult to measure 
intelligence and SA. Nevertheless, there are techniques to assess the situation awareness of AI: 

• Integrating a neural network in the AI system so that the system learns to estimate itself 

• Evaluation of AI generated outputs by experts 

• Enhancing the AI with other technologies so that it learns to estimate its own performance 

For instance, AI systems can be expanded with local optimisations, approximate reasoning, and neural 
networks that simulate expectation based on previous training (Can AI Systems Match Human-Level 
Situational Awareness? | Bench T, n.d.). Another possibility is to estimate the situation awareness of 
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AI by having SMEs validate the generated output (Pullum, 2021). SME problem solving can also be used 
in comparison with novices and AI – the difference in approach and results can be analysed and, 
depending on how AI performs, its situation awareness can be estimated. 

Jantsch and Tammemäe (2014a) developed a framework for assessing the awareness level of AI 

systems, positing that analysis of awareness and self-awareness and their implementation into AI 

systems is a way to improve those systems’ robustness. They present seven conditions for awareness, 

with 5 being conditions of being aware of a certain property P and 2 conditions for a subject (system) 

to be aware of itself: 

Table 3: Conditions for AI system awareness 

 Condition Code and Name Condition Description 

CONDITIONS  
FOR AWARENESS  
OF A PROPERTY 

(C.1) Meaning Condition Subject makes physical measurements or 
observations that are used to derive the 
values of property P by means of a 
meaningful semantic interpretation. 

 (C.2) Robustness Condition The semantic interpretation is robust. 

 (C.3) Attribution Condition There is a semantic attribution which is 
meaningful. 

 (C.4) Appropriateness Condition The subject’s reaction to its perception of P is 
appropriate. 

 
(C.5) History Condition A history of the evolution of the property 

over time is maintained, in particular of the 
increasing or decreasing deviations over time. 

CONDITIONS  
FOR AWARENESS  
OF SELF 

(C.6) Goal Condition The subject can assess how well it meets all is 
goals, thus having an understanding which 
goals should be achieved and to which extent 
they are achieved. 

 
(C.7) Goal History Condition The subject can assess how well the goals are 

achieved over time and when its performance 
is improving or deteriorating. 
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A brief description of the five awareness levels, with an emphasis on conditions necessary to reach 
each level, is as follows: 

Table 4: AI system awareness level classification 

Awareness Level Necessary Conditions to reach Level 

AWARENESS LEVEL 0 
(FUNCTIONAL SYSTEM) 

• System output is a mathematical function of inputs (always reacting 
in the same way to inputs)  

• System fulfils conditions (C.1) to (C.4) 

AWARENESS LEVEL 1 
(ADAPTIVE SYSTEM) 

• System is adaptive, meaning that it tries to minimise the difference 
between input and reference values by use of a PID controller or 
similar algorithm  

• System fulfils conditions (C.1) to (C.4) 

AWARENESS LEVEL 2 
(SELF-AWARE SYSTEM) 

• System is aware of at least one property and one environment 
property according to (C.1) to (C.4) + (C.6) 

• System contains an inspection engine which periodically derives one 
integrated attribution of the subject as a whole 

• System computes its actions based on (a) monitored and attributed 
properties of the system and of the environment 

AWARENESS LEVEL 3 
(HISTORY SENSITIVE  
SELF-AWARE SYSTEM) 

• System fulfils all requirements of an Awareness Level 2 system 

• System fulfils the history conditions (C.5) and (C.7) 

AWARENESS LEVEL 4 
(PREDICTIVE SYSTEM) 

• System fulfils all requirements of an Awareness Level 3 system 

• System’s decision-making process involves a simulation engine which 
can predict the effects of actions on the environment and the system 
itself and, in case of an anomalous result, search through simulations 
for the best action 

AWARENESS LEVEL 5 
(GROUP-AWARE SYSTEM) 

• In addition to being self-aware, the system distinguishes between 
itself, the environment, and the peer group (which is treated 
differently because of its own set of expectations and goals) 

 

The original article does not offer a mechanism for applying this classification to existing AI systems. 
The conditions and awareness levels will therefore be used as guidelines, but preliminary analysis 
shows that an informed choice regarding system scope must be made since it will influence the 
classification results. The classification of the AI SA KG system will be performed in its own section of 
the “Results” chapter of this document. 

To obtain better situation awareness and to improve the accuracy of the acquired situation awareness, 
intelligence from multiple sources is required to filter the discrepancies reported from a particular 
intelligence source (Munir et al., 2022). The intelligence itself depends on how the machine was 
developed and with what data it was trained or tested. 

2.3 Human-Machine Team Situation Awareness 

Human-machine collaboration is investigated for simple interactions with robots in production 
(Buxbaum, 2020). There, challenges consist in the costs of attentional resources to ensure coordination 
of human and robot actions in a flexible assembly production, as well as in the modality in which 
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information on the state of assembly process and the current task performed by the robot should be 
conveyed to the human operator. ATC is presenting a much more dynamic environment for human-
machine collaboration than manufacturing. The chapters below outline the concept of human-
machine team situation awareness and a systematic to describe the level and quality of awareness 
that can be reached by a human-machine situation awareness system. 

2.3.1 Distributed Human-Machine Team Situation Awareness 

As described in section 2.1.1.4 team situation awareness with technical systems focusses less on 
sharing information, but more on mutual and compatible situation awareness to reach a commonly 
understood mental image of what is happening and what is going to happen. In terms of the AISA 
concept, machine/system should be treated as a person because, in this scenario, the system is part 
of the team. Figure 2 depicts the ATCO-AI situation awareness system in collaboration presented in 
D2.2 (AISA Consortium, 2020b). 

 

Figure 2: Conceptual diagram of the system including ATCOs and AI situation awareness system 

Figure 2 depicts the sharing of information sources for human and machine situation awareness. This 
will be further described in the chapter below. If the goal for effective human-machine team situation 
awareness is to achieve mutual understanding, then ATCOs need to be able to understand machine 
situation awareness (comprehensibility and trust) and the machine situation needs to be aware of the 
system state (the state of its subsystems and of ATCOs).  

2.3.2 Comparison of Human and Machine Situation Awareness 

Sharedness and/or compatibility of information between ATCO and AI situation awareness system 
for human-machine team situation awareness is depicted in Table 5. 
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Table 5: Knowledge represented in the AI SA KG (from D2.1) 

AI SA Knowledge and Information Sources ATCO Knowledge and Information Sources 

Static information (from AIXM, …) The map on the radar screen with info about airports, 
navaids, etc. 

Situation-specific situations (weather, aircraft 
positions) 

Radar screen with current positions of aircraft and 
additional aircraft information 

Predictions (from ML module) 

 

Augmented radar screen with predicted trajectories + 
alerts 

Logically derived information (from rule-based 
reasoning) 

Implicit or explicit thoughts/judgements in the ATCO’s 
mind/memory 

ATCO’s actions (activity log of human-machine 
interactions) 

ATCO’s self-observation and observation of colleagues 

The provenance of 1.-5. ATCO’s knowledge about equipment + ATCO’s 
reflective thinking 

 

2.3.3 Aspects of Human-Machine Collaboration for Situation Awareness 

Human situation awareness is built by combined bottom-up and top-down information processes (see 
2.1.1). The environment and systems can support human situation awareness, if … 

• the system can provide the relevant information (e.g., sensors, data transmission capabilities, 
networking), 

• the interface design makes critical information available in an effective format for transmission 
of information (e.g. modality, display design), 

• the system complexity and more specifically the number and interrelatedness of 
subcomponents in combination with the rate of information change allow to keep track of new 
inputs and changes, 

• the level and design of automation allow the individual to stay “in-the-loop” and understand 
what is happening and what the system is doing, 

• stress, fatigue, and workload as a function of the task environment and the system interface 
are minimised (Endsley, 2018). 

Inadequate design of support systems can lead to mental load and time pressure which in turn may 
create problems for situation awareness such as attentional narrowing, where attention to peripheral 
sources of information is decreased (Broadbent, 1971). Other effects include premature closure and 
shortcuts to information processing that lead to decision without exploring all information available 
(Keinan, 1987) as well as poorly organised scan patterns, which may lead to level 1 situation awareness 
problems (Janis, 1982). A reduction in working memory capacity and deteriorated retrieval may 
negatively affect level 2 and 3 situation awareness.  

These aspects will be relevant for human-machine interactions and the respective human-machine 
interface of the future AI SA system.  
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3 Methods 

This chapter summarises information on the experimental plan and the methods for data acquisition 
and analysis. Additional information on technical details are reported in the appendix section. 

3.1 Experiments 

To meet the requirements of task 5.1 Comparison of situation awareness between AI and ATCO and 
task 5.3 Human performance in distributed SA defined in the Grant Agreement No. 892618, two 
experiments were conducted with human-in-the-loop simulations. Experiment 1 took place from 8 to 
12 November 2021, experiment 2 was held from 11 to 14 January 2022.  

The impact of machine situation awareness on human performance was studies with a between-
subjects design comparing human performance – the dependent variable – across the working 
conditions “without AI SA input” (experiment 1) and “with AI SA input” (experiment 2) – which 
represent two independent variable conditions. The experimental plan of the AISA project can be 
found in Appendix L.  

Table 6 Between-Group Comparison for effect of AI SA support 

Independent 
Variable conditions 

Groups Subjects Dependent Variables 

Without AI SA Support Control Group N= 20 ATCOs (Experiment 1) Human Performance:  

Start of conflict solution,  

Conflict duration 
With AI SA Support Experimental Group N= 16 ATCOs (Experiment 2) 

 

Experiment 1 is a human-in-the-loop simulation and provided recordings for situation awareness of 
ATCOs, for a baseline of human performance without “AI SA input” in an environment similar to ATCOs 
work conditions at Skyguide, and for computing AI SA outputs by the AI SA system. The exercises done 
by ATCOs were converted to RDF graphs and were fed into the AI situation awareness system to 
generate artificial situation awareness–AI SA outputs. Those outputs could later – in the second 
experiment - be compared with the situation awareness of ATCOs using query technique. In addition, 
the AI SA system’s outputs were used as “AI SA inputs” to ATCOs in experiment 2 to explore human-
machine team situation awareness. 

Experiment 2 started with one human-in-the-loop scenario, followed by scenarios where ATCOs were 
in a “watch only” role and complied with the procedures that an ATCO from experiment 1 had selected. 
This was necessary to standardise the scenarios as the AI SA system at the current stage is not able to 
operate in real-time. For the ATCOs, the role in the “watch only” scenarios was similar to the job of a 
coach in the ACC. They were asked to observe the situation and provide answers about specific aspects 
of situation awareness. 
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The experiments were conducted on two working stations in parallel. Figure 3 shows the timeline of 
experiment 2. Measurements were taken during the scenarios. At the end of each scenario, 
questionnaires were filled out. A debriefing questionnaire followed at the end of the experiment. 

 

Figure 3: Overview of experimental setup regarding the approximate timing of measurements 

Information about the variables measured (Section 3.8 and following), the socio-demographic analyses 
for the participants (Section 3.6) and the methods for data collection and processing  
(Section 3.11) are provided in the respective chapters. 

Experiments were realised on site in the facilities of the air navigation service provider and AISA 
consortium partner Skyguide in Dübendorf (Switzerland). Apart from providing the facilities for the 
experiments, Skyguide strongly contributed to the successful execution of the experiments by means 
of consulting, accompaniment through subject matter experts (SMEs) and the provision of ATCOs as 
experiment participants. 

As a further consortium partner, the Faculty of Transport and Traffic Sciences (FTTS) of the University 
of Zagreb contributed the setup of the simulation (Section 3.2). Members of FTTS created the 
scenarios, accompanied the experiments as pseudo-pilots in the simulations and accomplished many 
tasks to prepare for experiment 2. 

The Zurich University of Applied Sciences (ZHAW) held the lead of work package 5 in the AISA project 
and was responsible for the planning and execution of the experiments and analysing results for some 
of the research questions.  

During the experiments, different data were recorded including: 

• Eye tracking recording for each scenario 

• Screen recording for each scenario 
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• Frontal recording over the whole experiment for each ATCO 

• Biometrical data over whole experiment for each ATCO 

The post-processing methods for the collected data are described in subsequent chapters. 

3.2 Simulation Tool 

For the experiments, a computer-based simulation program was used. “EUROCONTROL simulation 
capabilities and platform for experimentation" (ESCAPE) is a scalable EUROCONTROL ATM real-time 
simulation platform supporting small- and large-scale simulations. ESCAPE is also available on a light 
platform, which was used in the experiments. The ESCAPE Light simulator is a lightweight yet high-
performance version of the ESCAPE software (https://www.eurocontrol.int/simulator/escape). It was 
installed on 4 laptops, allowing the experiments to run on two positions simultaneously. Two laptops 
corresponded to the controller working positions, and the remaining two were used for starting the 
exercises and hosting the pseudo-pilot working positions. 

Scientific associates from FTTS populated the simulation program with actual Swiss en-route traffic 
data from the 4 July 2019 and further enriched the scenarios by modifying flight paths and adding or 
removing aircraft in accordance with the Skyguide SME in order to generate situations of a large 
variety. The vast majority of the trajectories used in the simulations are actual flown trajectories, 
therefore the raw data did not contain conflicts or situations of interest since ATCOs have done their 
job to separate the flights. The modifications to the flight paths were minor, limited mostly to slightly 
changing the entry time of flights or adding more points to the planned routes. If the SME estimated 
the actual workload to be too high for the purposes of the experiment, some flights were deleted, or 
their trajectories changed to reduce the workload. The goal of the modifications was to achieve pre-
planned conflicts and situations where specific ATCO input is expected. This flight data was previously 
excluded from training for the AI. That way generalizability of AI situation awareness to new data is 
investigated. 

To match the operational context of the ATCOs, ESCAPE Light was adapted to include measurement 
tools ATCOs are used to working with (such as distance measuring). Nevertheless, some differences 
persisted to the system SkyVisu, which is developed by and implemented at Skyguide. The tools 
mentioned in the list below are not included in ESCAPE Light, only in SkyVisu. Furthermore, the 
operation of the systems is different, i.e. the inputs of the commands and handling of the flight label 
are different, and the mouse buttons in SkyVisu are programmed with more functions and buttons 
than the ones used in the experiments. The mouse function has been modified to be more similar to 
the ones used in the daily operations by the participants. 

Conflict manager: Conflicts are detected by the Conflict Manager (CM) function, which is a 3D 
evolution of the Horizontal Scanning Tool (HST) and Dynamic Scanning Tool (DST). The CM permanently 
scans for conflicts and encounters based on aircraft current position and trajectories. When conflicts 
or encounters are detected and the conflict display criteria are met, the CM displays the conflicts. 

E-coordination: Used for electronic coordination between two Area Control Centre (ACC) sectors. For 
example, a direct point or another level can be given electronically. This is not an important tool for 
the experiments since there were only one-sector exercises. 

Direction finder: Every time an aircraft calls on the frequency, the antenna of Skyguide picks up the 
message and can determine from which direction the message came. A thin line is then displayed on 
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the radar showing the approximate direction of the aircraft. Therefore, it is possible to quickly detect 
the aircraft. In ESCAPE Light this function was not available. 

Entry window: With the help of the entry windows, it is possible to see which planes are coming from 
which direction, at which altitude and at which time. Each entry sector has its own entry window. So, 
it is possible to plan earlier if a crossing occurs and how to solve it. In ESCAPE Light an entry window 
could have been shown, but only one for all sectors, which would not have supported the overview. 

3.3 Scenario Descriptions 

The subsequent chapters describe the scenarios used in the experiments. The order of the scenarios 
was randomized to avoid systematic influence of learning over time. Although all the participants were 
presented the same scenarios, not all ATCOs encountered the same traffic situations in the exercises. 
This is because the traffic situation changes with every ATCO clearance, leading to some crossings 
being unintentionally created by the ATCOs themselves, but also certain planned crossings becoming 
either more complicated or simplified by the controllers’ actions. For the convenience of the 
understanding, each scenario was given a specific abbreviation which indicates if it was conducted as 
a part of experiment 1 or 2 (E1 or E2), and an additional number used to distinguish one scenario from 
another (STR for training, S1, S2, S3 and S4). 

3.3.1 Experiment  1 

Experiment 1 includes a total of six scenarios. The participants always started with the Training 
scenario (E1ST), which is an introductory exercise where the ATCOs would have a chance to get used 
to the differences in the human-machine interface (HMI) compared to their system. In the E1ST 
scenario, two SMEs from Skyguide who were already familiar with the environment were there to 
coach the participants. The E1ST scenario lasts for approximately 20 minutes and includes 26 aircraft. 
The goal was for each participant to issue all the instructions they normally would when working on 
live traffic and get a grasp of the available tools. 

After the Training scenario, each participant would do the Light scenario (E1S5) which lasts 7 minutes 
and includes 19 aircraft. There were no intentional non-compliances by the pseudo-pilots and the 
traffic complexity was low. The Light scenario was not used for the situational awareness analysis, but 
rather just for the ATCOs to get comfortable with the simulation platform. 

After the E1ST and E1S5 scenario which were done in the same order for all participants, the rest of 
the scenarios explained below were randomised in order to avoid the measurement of a learning effect 
in the results. 

Short (E1S1): This scenario lasts five minutes and includes 19 aircraft. There is one planned non-
compliance regarding the change of flight level. 

Crossing (E1S2): This scenario lasts for 15 minutes and includes 24 aircraft. The main focus of the 
scenario is a triple crossing that needs to be solved before the loss of safe separation occurs. In the 
same scenario, there is a non-compliance by the pilot that results in a flight level bust. The timing of 
this conflict depended on the pseudo-pilots. 

High traffic (E1S3): This scenario lasts 15 minutes and includes 27 aircraft. There is a planned non-
conformance concerning the speed control that is necessary for one flight pair where the following 
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aircraft is faster and catching up to the leader. However, the choice of solution for that pair lies on the 
ATCO, so the non-compliance is not present for each scenario run. There are additional four crossings 
present in the scenario design. 

Military (E1S4): This scenario lasts 23 minutes and includes 32 aircraft. There are two TRAs (Temporary 
Reserved Areas) in the simulated sector – one in the central part of Switzerland (referred to as Mil 
Centre) and one in the eastern part (referred to as Mil East). Mil Centre is not available for commercial 
traffic in the beginning of the exercise. It becomes available two minutes after, and the aircraft can be 
cleared to fly direct routes through the previously restricted area. Mil East activates in the second part 
of the scenario and remains unavailable for commercial traffic until the end. The challenge is to re-
route all aircraft whose planned trajectories are crossing the TRA. In addition to the activation and 
deactivation of the TRAs, there are two crossings included in the scenario design. 

3.3.2 Experiment 2 

A significant difference between the experiment 1 and 2 is the handling of the scenarios.  
In experiment 1, all scenarios were interactive, whereas in experiment 2, only one scenario (apart from 
the training scenario (E2ST)) was executed with the possibility of ATCO handling the traffic. All others 
were “watch-only", meaning that the ATCOs themselves had no control. They watched a replay of the 
exercises from experiment 1 and listened to audio recordings of the exchange between the controller 
and the pseudo-pilot on the frequency. They had to put in the ATCO instructions they heard into the 
radar label and had the possibility of using the measuring tool on the controller working position 
(CWP). That way, they were able to gain situational awareness. Additionally, they were given an audio 
AI input that was generated by analysing the data collected in experiment 1. The production of the 
audio AI inputs is below. The scenarios used in experiment 2 are explained below. 

The E2ST scenario in experiment 2 was prolonged by the simulation developers by merging the E1ST 
and E1S5 scenarios to give the ATCOs more time to get used to the system since they would get less 
chance to control the traffic later on. The new E2ST scenario included 32 aircraft and lasted 30 minutes, 
but the ATCOs could end the scenario sooner if they felt they were ready. After the E2ST scenario, the 
rest of the scenarios were done in a random order for each ATCO. The only exception is that the E2S2 
scenario is always done before the “watch-only” E2S2.2 scenario. 

The crossing interactive (E2S2.1) scenario started at the same time as in the experiment 1 and lasted 
for 13 minutes. There were 23 aircraft in the scenario. It included oral AI inputs regarding the predicted 
conflicts. There were no pilot non-compliances. 

The “watch-only" crossing (E2S2.2) lasted for 8 minutes and included 23 aircraft. It included the same 
traffic and had a temporal overlap with the human-in-the loop scenario, which is why it was important 
to let the participant in experiment 2 have control of the traffic before only observing the playback. 
The flight level bust was part of the watch-only scenario. 

The “watch-only” high traffic (E2S3) scenario included the first ten minutes of the original scenario. 
There were 24 aircraft. It contained crossings and the speed bust, but not the non-conformance. 
Instead of the speed non-conformance, there was a wrong readback by the pilot that the ATCOs should 
have noticed. 

The military scenario (E1S4) from experiment 1 was split into 2 watch-only scenarios in experiment 2. 
Military 1 (E2S4. 1) started at the same time as E1S4. The main observed situation in the scenario was 
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the deactivation of the Mil Centre TRA and following if the controllers will notice the flights that can 
use the previously restricted airspace, thus improving the quality of service. Military 1 lasted 6 minutes 
and included 23 aircraft.  

Military 2 (E2S4. 2) watch-only scenario starts two minutes after the end of Mil 1. It included the 
activation of the Mil East area and the re-routing of traffic around it, as well as the exit crossing and 
the crossing in the sector. This scenario lasted 6 minutes and included 30 aircraft. 

3.4 Materials 

Audio inputs presented to the ATCOs in experiment 2 were used for two purposes. One was to help 
the ATCO achieve some degree of situational awareness of the traffic situation they are not in control 
of themselves, and the other to present the AI inputs so ATCOs could assess their accuracy and 
usability.  

For achieving situational awareness, the frequency transmissions between the ATCO and pseudo-pilot 
from the selected exercises in experiment 1 were used. They were first written in the form of a 
transcript and then turned into audio clips using Shotcut (Shotcut - Home, n.d.), a free and open-source 
video editing app. Two different synthetic voices were used, one corresponding to the ATCO and one 
to the pseudo-pilot transmissions. They were timed to correspond to the video replay of that same 
exercise. 

Following experiment 1, the data from the recorded exercises was used to populate the KG. AI SA tasks 
were then applied to the data to generate KG system outputs. The full list of AI SA tasks and their status 
can be seen in Table 2 in Section 1.2.1.4.  

Since there was not an option for additional HMI to be developed to visually present the inputs to the 
ATCOs, and the used simulator does not have that capability, the number of outputs to be presented 
to the ATCOs depended greatly on the means of presentation. The frequency is a scarce resource, and 
the transmissions must be clear and concise to take up as little time as possible. Adding another audio 
element over the already recorded ATCO and pilot transmission means the frequency becomes even 
more used up. The number of KG outputs is therefore kept to a minimum needed to query the ATCO 
situational awareness. The KG system outputs that would be used in experiment 2 as inputs were hand-
selected based on their relevance and in accordance with the planned queries (see Appendix A.2).  
The selection process started by including the predicted conflicts where the predicted minimum 
distance is less than 12 NM. This filter was the first added to reduce irrelevant KG outputs. Each conflict 
prediction was only presented once. The timing was discussed with the SME. The outputs regarding 
other situations where there was a recorded degradation of situation awareness in experiment 1, i.e., 
a flight level bust or speed non-conformance, were then added to the predicted conflicts. The outputs 
regarding aircraft whose planned trajectories are crossing an active TRA or which can be given a direct 
route for improved quality of service were also included. 

Once the AI inputs were selected from the full list of KG system outputs, they were turned into audio 
clips in the same way as the controller-pilot transmissions. The voice used was different from the ones 
selected to represent the ATCO and pseudo-pilot. The AI inputs were incorporated into the same audio 
file as the frequency transmissions in the appropriate places right after the planned queries concerning 
the level of situational awareness. Figure 3 in Section 3.1 shows the full overview of the experimental 
setup, including the order of the queries and AI inputs in the bottom left corner.   
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3.5 Experimental Manipulation 

This chapter reports on the verification, if the conditions low vs. high for task load were successfully 
implemented with the design of the scenario. Workload measures with ISA (Instantaneous Self-
Assessment, Section 3.10.1) were assessed several times during each interactive scenario in 
experiment 1 and 2. To test the experimental manipulation of task load, the mean ISA workload rating 
was compared with the task load ratings provided by subject matter experts (SMEs). In Table 7 it can 
be seen that scenarios E1S2, E1S3 and E1S4 have a similar average ISA value. These three scenarios 
were also rated the most complex by the SMEs. The ISA value of the E1S1 scenario is a bit lower, which 
is also in agreement with the SMEs' evaluation. The workload of the E1S5 scenario is the highest. This 
can be attributed to the fact that a lot of capacity was needed to get used to the system. It was the 
first scenario for all ATCOs. The SMEs estimated the complexity of the E1S5 scenario to be much lower. 

Table 7: ISA results for experiment 1 and 2 (N= 20; 16) 

 Experiment 1 Experiment 2 

 E1S5 E1S2 E1S3 E1S4 E1S1 E2ST E2S2.1 

Min 2 1 1 2 1 1 2 

Max 4 5 5 4 3 5 5 

Mean 3.55 2.75 2.72 2.77 2.30 2.69 3.25 

SD 0.6 0.88 0.87 0.62 0.66 0.94 0.88 

Complexity 
rated by SMEs 

1 4.5 4.5 3 2   

 

In addition, SMEs were asked to assess the subjects' manipulation skills with ESCAPE Light on a scale 
from 1 to 5 (low to high skill): In experiment 1 they rated “ESCAPE Light handling skills” after the E1ST 
scenario and again after the E1S5 scenario. In experiment 2 they were asked to rate after scenario 1 
(E2ST). While the SMEs were asked about the handling of the labels and the conflict detection tool in 
the first experiment, they were asked about the following assessment criteria in experiment 2: 

the handling with ESCAPE Light concerning … 

• ... the speed vectors 

• ... the labels (in general) 

• ... the measuring tools (e.g. VERA) 

• ... the change of the current FL and exit level 

• ... the transfer 

• ... the display of the planned route 

• ... "direct to" inputs 

Table 8 shows the results for the manipulation check for “handling skills” to make sure participants 
were ready for simulation. In experiment 1 skills increased from the training scenario to the first 
experimental scenario from 2.75 to 3.55 on average. The lowest rating (1) was used by SMEs in both 
scenarios indicating some ATCOs were still struggling with the simulation tool even when the 
experiment started. In the training scenario of experiment 2 the handling skills were rated 3.83 on 
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average. No ATCO was rated lower than 3 indicating that they had sufficient practice before the 
experiment started.  

Table 8: Manipulation check for subjects’ handling skills with ESCAPE Light rated by the SMEs 
during experiment 1 and 2 (N= 20; 16) 

 

To see if participants with higher scores on handling skills actually felt less workload the SMEs' 
assessment was compared with the subjects' self-assessment (ISA). A comparison of the SMEs rating 
regarding the label handling and the subjects’ ISA in the light scenario (E1S5, experiment 1) and the 
scenario 1 (E2ST, experiment 2) is seen in Figure 4.  

 

Figure 4: Comparison of subjective workload (ISA) and SME rating for ESCAPE Light handling skill “label 
handling” in experiment 1 and 2 (N= 20; 16) 

Both graphs in Figure 4 compare the workload perception of the participants with their label handling 
skills assessed by the SMEs. The left plot shows the comparison in experiment 1 while the right plot 
compares the assessments in experiment 2. In experiment 1, the label handling capabilities of 6 ATCOs 
were rated medium by the SMEs. These 6 ATCOs also rated their workload assessment as medium. In 
experiment 2, 12 ATCOs were assessed with a label handling capability of 4 out of a maximum of 5 by 
the SMEs. The 12 ATCOs assessed their workload between 1 and 4 out of a maximum of 5. Out of these 
12 ATCOs, 8 assessed their workload as medium (3). This suggests that in these cases there is a 
correlation between the ATCOs' workload assessment and the SMEs' handling assessments. 

 Experiment 1 Experiment 2 

 E1ST E1S5 E2ST 

Min 1 1 3 

Max 4 5 5 

Mean 2.76 3.55 3.83 

SD 0.70 0.81 0.68 
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In conclusion, it can be said that the participants became increasingly familiar with the ESCAPE Light 
simulation software over time and accordingly improved their handling skills. This can be seen because 
the SMEs assessed the handling skills after the E1S5 scenario in experiment 1 better than after the 
E1ST scenario. In experiment 2, the average rating of handling skills by SMEs was slightly higher than 
in experiment 1 (Table 8). One possible reason is that participants (N = 3) had already taken part in 
experiment 1 before experiment 2 and were therefore more experienced in the use of ESCAPE Light. 

Nevertheless, it should not be neglected that the unfamiliar work method with the ESCAPE Light 
simulation software can have a major influence on the results. At least this is what the questionnaire 
results of the debriefing after the scenarios suggest. Figure 5 shows that the mental capacity needed 
to work with ESCAPE Light was considerable according to the subjective assessment of the subjects.  

 

Figure 5: Mental capacity absorbed to handle new system (ESCAPE Light) (N= 20; 16) 

And Figure 6 shows ATCOs’ signs of discomfort with the simulation tool: A minority of the ATCOs felt 
comfortable with ESCAPE Light. Half of the ATCOs indicated discomfort, some even at a very high level.  

 

Figure 6: How comfortable did you feel with the ESCAPE Light simulation software? (N= 20; 16) 
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From the analysis of the handling skills, it may be concluded that most ATCOs were capable to handle 
ESCAPE Light but at considerable costs in terms of subjectively felt absorption of mental capacity. It 
can be assumed that the unfamiliarity with the tool came along with side effects such as a lack of 
automatised routine skills in using the tool’s functionalities (e.g., measuring equipment) and an 
increased need to correct in case of operating errors.  

To exclude a systematic influence of learning and fatigue in the experiment, the scenarios were 
presented in randomised order (Section 3.3). 

3.6 Participants 

ATCOs from en-route sector in Swiss airspace (LSAZM567) were asked for voluntary participation in 
the two experiments. The experiments were scheduled during ATCOs’ work time. Participants were 
previously informed about the experiment via the internal information system by their supervisor.  

ATCOs were independently sampled for experiments 1 and 2. By chance, three ATCOs participated in 
both experiments. Altogether, data was gathered from 33 different ATCOs. 

Table 9: Descriptive analysis for participants in experiment 1 

 

In experiment 1, 20 ATCOs took part (5 women and 15 men) with an average age of 42.75 years  
(SD = 8.11), ranging from 22 to 55 years. The average work experience was 17.75 years (SD = 7.5), 
ranging from 0 to 28 years. 

Since only 3 probands had less than 10 years of professional experience, the sample from experiment 
1 consists mainly of experienced ATCOs. While 9 subjects work exclusively as ATCOs, 11 have additional 
functions: 6 supervisors, 3 training instructors and 2 experts (e.g., domain managers). Apart from one 
ATCO, the subjects had never worked with the ESCAPE Light simulation software before experiment 1.  

Table 10: Descriptive analysis for participants in experiment 2 

 

The group in experiment 2 is on average slightly younger than in experiment 1. As in experiment 1, 
most of the probands are experienced ATCOs. A third of the participants (N = 6) work exclusively as 
ATCOs, 4 also as supervisors and 6 have other additional functions within Skyguide. Three participants 
had already taken part in experiment 1 and have therefore gained previous experience with the 

 Quantity Av. Age [years] Av. Working Experience [years] 

Female 5 (25%) 41.40 16.00 

Male 15 (75%) 43.20 18.30 

Total 20 42.75 17.75 

SD  8.11 7.50 

 Quantity Av. Age [years] Av. Working Experience [years] 

Male &  
Female 

15 (93.75%) & 
1 

40.38 17.31 

SD  7.73 7.77 
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ESCAPE Light simulation tool. Most of the participants (13 ATCOs) had never worked with ESCAPE Light 
before experiment 2.  

No monetary compensation for participation was provided to subjects. Instead, they received a 
symbolic present at the end of the experiment.  

3.7 Measurement of Artificial Situational Awareness 

In experiment 1, the ATCO participants were asked to complete a total of 6 exercises on an ATC 

simulator which were recorded and used as a base for experiment 2 that followed (as explained in 

Section 3.1). The data from experiment 1 was also used to compare human and machine situational 

awareness. With 20 different ATCOs controlling the air traffic, each in their own way, plenty of 

information was gathered so that human situational awareness could be analysed and objectively 

measured against the outputs generated by the AI SA KG system (later referred to as „the KG system“). 

It is important to emphasise that the Skyguide ATCOs were not working on a system they are used to. 

They had to adapt quickly to a simulator they never used before and work with only the basic controller 

tools, whereas in their day-to-day job they can rely on a wide range of different safety nets. Those 

circumstances greatly increased their workload. Any recorded loss of situational awareness will 

therefore not be categorised as a controller's mistake and cannot be an indicator of ATCO 

performance, since it is very unlikely it would have happened in real traffic. Henceforth, loss of 

situational awareness of the participants on the ESCAPE Light system in experiment 1 will be referred 

to as „degraded human situational awareness “. 

There are three approaches to the measurement of artificial situation awareness presented below. 

3.7.1 Knowledge Graph and Task Analysis 

In this stage of the analysis, only AI SA tasks not dealing with future conflict predictions are taken into 

account for each defined timestamp and situational awareness is formed based solely on the currently 

observed situation and historic data. For example, all the outputs corresponding to timestamp 

12:00:00 in the high scenario will describe the current state of the aircraft in the airspace. At that 

moment, their position or status at 12:00:15 are not predicted. A possible output regarding a climbing 

aircraft is „Aircraft is climbing towards its cleared flight level “, because in that moment, it can be seen 

that it has a positive rate of climb, its current flight level is higher than the previous and lower than the 

cleared flight level. While the system is generating outputs for future prediction related tasks, they are 

not analysed in this section. 

To be able to objectively measure situational awareness in both human and KG system, a list of 

situational awareness indicators was made that are unambiguous and easy to assess. For certain 

situations, a time buffer was introduced for the ATCO, as it cannot be claimed that their situational 

awareness has degraded if they did not react instantaneously as a computer does. Those buffer values 

were negotiated with the SME. A wrong output by the KG system that does not correctly describe the 

traffic situation would also be considered as degraded situational awareness, however, all outputs 

regarding the recorded scenarios in experiment 1 have been tested and improved to avoid that 

situation. The objective situational awareness indicators are further explained below and summarised 

in Table 11. 
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Check if aircraft is transferred on time 

The KG system has the information about the coordinates of the sector boundary, stored in the static 

data graph of each scenario. By calculating the distance between the current aircraft position and the 

sector boundary, it is possible to use the aircraft’s current speed to calculate the time needed to reach 

the boundary. The KG system will send an output 2 minutes before the aircraft reaches the sector 

boundary, reminding the ATCO that the aircraft needs to be transferred. Additionally, the KG system 

checks whether the aircraft is cleared to its crossing flight level by the time it has been transferred. 

For the machine, degraded situational awareness is, therefore, failure to notify the ATCO 2 minutes 

prior to being transferred and/or never checking whether the aircraft is reaching or maintaining its 

crossing flight level. For the human, it is considered that their situational awareness has been degraded 

if the aircraft crosses the boundary without being transferred, and/or not clearing aircraft to its 

crossing flight level before transferring it. In case the ATCO transfers the aircraft earlier than 2 minutes 

before the boundary and the flight is cleared to or maintaining the crossing flight level, it is considered 

that neither human nor machine have suffered degradation of situational awareness. A case where 

the aircraft is transferred on time but not at the appropriate flight level is degradation of human 

situational awareness. If AI SA output indicated the necessary flight level change, machine situational 

awareness is not degraded. Table 11 below summarises the situations where situational awareness is 

considered to be degraded regarding this indicator. 

Check for reaction to non-compliance 

After issuing a clearance to the pilot, the ATCO is responsible for monitoring whether the pilot has 
reacted appropriately. Usually, a readback by the pilot is expected, but it is still possible that an error 
occurs even if the readback is correct. For example, the pilot can put in a wrong value for the flight 
level, resulting in a flight level bust. In experiment 1, two non-compliances by the pilot have been 
intentionally included in the simulation exercises. More precisely, in E1S2, there is a flight level bust. 
In the E1S3, there is a speed non-conformance. Subsequent analysis showed that there have been 
unintentional non-conformances regarding the cleared rate of climb/rate of descent (ROC/ROD) as 
well.  

For the KG system, it is expected to generate an output indicating the non-conformance as soon as it 
happens, i.e., in the first timestamp after the clearance was issued and the pilot failed to respond or 
responded the wrong way. For the controllers, a time buffer of 30 seconds from the moment when 
the non-compliance is noticeable on the radar screen was introduced. 

Non-conformances fall into the following categories: 

• Heading/route non-conformance 
• Flight level non-conformance 
• Speed non-conformance 
• ROC/ROD non-conformance 

There have been no cases of heading/route non-compliances in the analysed scenarios. After 
consultation with the SME from Skyguide, it was decided that introducing that kind of non-compliances 
might cause unwanted conflicts and further increase ATCO workload. However, the KG system does 
include tasks which can notice deviation from the cleared route, which were tested aside from the 
human-in-the-loop experiments to see if they give expected results. It considers the known current 
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track of the aircraft and the expected track resulting from either cleared point, heading instruction or 
the flight plan. A comparison between those values shows whether the aircraft is following the cleared 
or the planned route in the first timestamp after the clearance is issued. For the KG system, if the 
expected output was missing or wrong, it would imply degradation of situational awareness. The ATCO 
would have a buffer of 30 second to notice the deviation before they are considered to have 
degradation of situational awareness 

The planned flight level non-conformance was always initiated by the pseudo-pilots when they asked 
for a level change and then put in the wrong value when the level change was approved. The cleared 
flight level is FL390 in that case, and the pseudo-pilots would climb the aircraft to FL395. The KG system 
is expected to give the output „Flight level bust “as soon as the aircraft passes its cleared flight level 
and continues to climb/descend. The human situational awareness is considered to be degraded if 
there is no corrective action by the ATCO within 30 seconds from the moment the aircraft levels off at 
the wrong flight level. 

The speed non-compliance initiated in the E1S3 depends on the ATCO input. To clarify, there are two 
aircraft flying on the same flight level and the same route, entering the airspace with 8 NM between 
them. The following aircraft is maintaining speed M.80, while the leading aircraft's speed is M.78, 
resulting in their distance gradually decreasing and them being in conflict by the time they exit the 
sector if no action by the ATCO is initiated. In some scenarios, the controllers notice the speed 
difference and issue speed clearances to one or both aircraft to ensure their distance does not continue 
to decrease. In that case, the pilot does not comply with the clearance. If the ATCO did not notice the 
non-compliance within 30 seconds, it is considered that the human situational awareness has been 
degraded. As for machine situational awareness, it is expected to receive an input indicating that the 
aircraft is not changing its speed in accordance with the clearance in the first timestamp after the 
clearance has been issued. 

The ROC/ROD non-conformances were not planned as an intentional part of the experiments that was 
meant to be analysed, but a few cases did happen as a result of pseudo-pilot error. The information 
the KG system uses are cleared ROC/ROD, current ROC/ROD, and previous ROC/ROD. A simple 
comparison shows whether the aircraft is maintaining the cleared rate, accelerating/decelerating 
towards it or not maintaining the cleared rate. Machine situational awareness is degraded when the 
KG system fails to provide an output or gives a wrong result. Human situational awareness is 
considered to be degraded when the ATCO does not notice the non-compliance within 30 seconds of 
the pilot's error.  

Check if flight is assumed on the label 

Prior to entering the sector, pilots usually make an initial call on the frequency of that sector, and the 
ATCO can identify them both on the frequency and on the radar label, therefore assuming the 
responsibility for that aircraft. If the flight enters the sector without making the initial call, controllers 
will try to reach them to establish control. In this analysis, one of the indicators of situation awareness 
is whether an aircraft has been properly assumed, i.e., whether the controller has assumed the flight 
on the label after having received the initial call.  

The KG system gathers information about when the flight makes the initial call and when it is assumed 
on the label. If the flight has sent the initial call but has not been assumed, the KG system should have 
the appropriate output in the first timestamp after the initial call, otherwise the machine situational 
awareness is considered to be degraded. The degradation of human situational awareness happens 
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only if the ATCO did not assume the flight on the label within 30 seconds after having received the 
initial call and responded to it on the frequency. The error might occur due to high workload at that 
moment or confusion due to similar callsigns, when the ATCO assumes an aircraft that did not yet 
make the initial call. 

Check if aircraft will fly through restricted airspace and if they can use previously restricted airspace 

There are TRAs used for military purposes in the Zürich upper airspace. In the military scenario, the 

central military area is active in the beginning and then deactivates in a few minutes. Later, the 

previously available eastern military area becomes active and therefore unavailable for commercial 

flights. The coordinates of the military areas as well as the activation times are written in the KG and 

with information on current position and planned trajectory, the KG system is able to compute 

whether the planned trajectory crosses the restricted area and when it is safe to use the previously 

restricted area.  

In the beginning of the scenario, the KG system identifies aircraft that can fly direct routes through the 

previously unavailable military airspace. If it fails to list all aircraft that can use the airspace, the 

machine situational awareness is considered to be partially lost. The ATCO, however, is not expected 

to issue direct-to clearances for all aircraft that can use the previously restricted airspace since it may 

not always be in line with their strategy for managing the traffic, i.e., ATCO situational awareness will 

not be considered degraded should they simply let the aircraft fly on their planned routes.  

In the second part of the scenario, the eastern military becomes active. Since the KG holds information 

about the activation time in advance, it can indicate which planned trajectories are crossing the 

military airspace as soon as those flights first appear in the KG. Degradation of machine situational 

awareness is a situation where one of the flight whose trajectory passes the restricted airspace is not 

recognised. Degradation of human situational awareness is when the ATCO does not vector the flight 

and it ends up entering the restricted area.  

Table 11: Summary of objective situation awareness indicators and the conditions for comparison 
between the machine and human 

Objective Situation 
Awareness Indicators 

Degraded Machine SA Degraded Human SA 

CHECK IF AIRCRAFT IS 
TRANSFERRED ON TIME 

There is no „Transfer aircraft“ 
output 2 minutes before 
boundary. 

The aircraft is not transferred 
before the sector boundary. 

 There is no output that the 
aircraft is not cleared to its XFL 
before the boundary. 

The aircraft is not cleared to its 
XFL before being transferred (if 
XFL is different from actual flight 
level at the time of sector entry). 

CHECK FOR REACTION  
TO NON-COMPLIANCE 

There is no output indicating the 
deviation from the cleared or 
planned route in the timestamp 
after the clearance has been 
issued or immediately, in case of 
deviation from the planned route. 

There is no corrective action by 
the ATCO within 30 seconds from 
the non-compliance. 
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 There is no „Flight level bust“ 
output in the timestamp after the 
cleared flight level has been 
passed. 

 

 There is no output indicating that 
the aircraft is not at cleared speed 
or accelerating/decelerating 
towards cleared speed in the 
timestamp after the clearance. 

 

 There is no output indicating the 
wrong ROC/ROD in the timestamp 
after the clearance. 

 

CHECK IF FLIGHT IS ASSUMED  
ON THE LABEL 

There is no output indicating that 
the aircraft has made the initial 
call but was not assumed on the 
label in the timestamp after the 
initial call. 

The flight is not assumed on the 
label within 30 seconds of the 
initial call or the wrong flight has 
been assumed. 

CHECK IF AIRCRAFT WILL FLY 
THROUGH RESTRICTED AIRSPACE 
AND IF THEY CAN USE 
PREVIOUSLY RESTRICTED 
AIRSPACE 

There is no output indicating that 
the aircraft can now use the 
previously restricted airspace. 

The flight has entered the 
restricted airspace. 

 

Differences of KG tasks at stage I and II 

During experiment 2, only seven KG system tasks had been presented (task 1.1, 1.8, 4.2, 5.1, 6.2, 8.1, 
8.2 of Table 2). At the time of writing, the KG were adapted to 46 tasks, which have been tested and 
fully implemented (compare Table 2). For instance, false recognition of the aircraft non-compliances 
(Flight level bust) occurred when aircraft would still have a non-zero vertical rate just after reaching 
cleared flight level. The marginal situations followed by some changes in the state of the aircraft were 
often the reason for faulty KG system outputs. KG system task which checks if aircraft will enter 
restricted (military) airspace had also been improved. Times of military sector activation and a list of 
the exit points that are placed inside the military sector had been added. This change made it possible 
to accurately predict whether the aircraft would be in the military sector even though the sector of 
interest is not currently active. Also, calculating whether the planned trajectory of the aircraft cleared 
on a heading crosses the military sector has also been improved. To reduce the number of false non-
compliances, a buffer of 4 kts for cleared speed and 2.5 NM for deviation from the cleared route was 
added. Newly added KG system tasks and presented improvements reduced the number of errors, 
increased the situational awareness of the system, and thus increased the number of situations 
monitored. 

The KG system will need more work before being used in an actual ATC department. For this reason, 
not all functions are available yet, as in the conflict detection system that Skyguide currently uses. 
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3.7.2 Analysis of Conflict Detection ML Module Predictions Regarding 

Situations of Interest 

As mentioned in 1.2.1.3, three ML modules have been produced from which the conflict detection 

module is the most frequently used. The output data was analysed to check the accuracy and 

applicability of the conflict detection module output data. Not every conflict detection ML module 

prediction was analysed at this stage, but rather the initial and the final prediction for each aircraft 

pair which had a predicted minimum distance of less than 25 NM. 

The initial prediction is made at the first timestamp when the conflict detection ML module provides 

an output about a certain aircraft pair, provided the ATCO did not previously issue any instructions to 

either of the aircraft. The information taken into account is the predicted minimum distance and 

predicted time to minimum distance from the moment the prediction is made. For those same aircraft 

pairs, actual minimum distance and time to minimum distance are measured in the simulator to be 

able to precisely compare the predicted and actual values. 

Similarly, the final prediction is made for each aircraft immediately after the last ATCO instruction for 

both aircraft in the observed aircraft pair. In case there were no ATCO instructions for the aircraft in 

that aircraft pair, the initial and final prediction will match. The actual minimum distance and time is 

measured and compared to the predicted values. 

In addition to the initial and final predictions being compared to the actual distances and time in the 

scenario, the statistical data described in 1.2.1.3 is added for each aircraft in analysed aircraft pairs. 

This information is then used to try to find the correlation between the data used for training the 

machine learning module to the accuracy of the predicted minimum distances. 

Although the conflict detection module recognises all aircraft pairs and provides a prediction for them 

if their minimum distance will be less than 25 NM, it is important to distinguish what is for ATCO 

considered as a situation of interest and what is a conflict. 

According to Metzger et al. (2001), every situation where the minimum distance between aircraft is 

less than double the lateral norm (5 NM) should require ATCO’s attention. Therefore, while analysing 

initial and final minimum distance predictions 10 NM is set as a limit for a predicted crossing to be a 

situation of interest.  

Four different outcomes of the minimum distance analysis are possible: 

• Initial prediction and actual prediction less than 10 NM, 

• Initial prediction and actual prediction more than 10 NM, 

• Initial prediction less than 10 NM and actual prediction more than 10 NM, 

• Initial prediction more than 10 NM and actual prediction less than 10 NM. 

Based on these result outcomes, it is possible to identify and count Type I Error and Type II Error as 

well as the rest of the result distribution. Later in Section 4.2.3 these results are presented and 

elaborated. 
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3.7.3 Analysis of Conflict Detection ML Module Predictions Regarding 

Conflicts 

In the previous section, situations of interest are analysed when comparing conflict detection module 
predictions. It is also possible to analyse the prediction of the module for aircraft pairs that would 
cause a violation of the declared separation minima without any ATCO action. The analysis of the 
conflict detection module prediction for aircraft pairs in conflict explains how the module predictions 
behave for these aircraft pairs i.e., whether the prediction corresponds to the actual minimum distance 
and whether the predicted distance increases after the ATCO resolves the conflict. Aircraft pairs that 
would cause a violation of the declared separation minima without any ATCO action cause a conflict. 
Inside each scenario, conflicts were implemented deliberately. Additionally, some conflicts have arisen 
through the action of ATCO. In the human-in-the-loop experiments, if the ATCO resolved a conflict by 
separating aircraft vertically, that situation could not be used for this analysis because the CD module 
cannot provide an output for vertically separated aircraft. By this analysis, a comparison of the module 
performance for aircraft pairs that would have minimum distance less than separation minima with 
the performance of the ATCO is enabled. 

3.8 Measurement of ATCO Situation Awareness 

In experiment 1 three different techniques were used to measure the ATCOs’ situation awareness: 
subjective rating, gaze analysis with eye-tracking to retrace ATCOs' visual attention and implicit 
performance measures from behavioural coding for radio calls and actions when interacting with 
pilots. A fourth technique was added in experiment 2: probe technique. They are described below. 

3.8.1 Subjective Rating for Situation Awareness 

After each scenario, subjects were asked to complete the SASHA_Q questionnaire (Dehn, 2008) for 
subjective situation awareness. This consists of six questions with behavioural descriptions for 
situation awareness aspects that were rated on a dimension from 0 (never) to 6 (always). E.g., “I was 
ahead of the aircraft.” (See A.1 for the full questionnaire.) 

3.8.2 Gaze-Based Analysis of Situation Awareness 

Eye tracking data were recorded with Tobii Pro Glasses 3 (100 Hz sampling rate) and processed using 
Tobii Pro Lab and a Computer Vision Tool. The two programmes and their benefits are described in the 
next chapters. 

3.8.2.1 ET Data Processing 

The raw ET data is processed for later analysis with Tobii Pro Lab software to export ET data such as ET 
coordinates, pupil dilation, AOI hits and gaze duration. The software displays the gaze in the ET video 
(see Figure 7), where the green circle represents the actual gaze, and the green line represents the 
gaze history. This video was used for behavioural coding in Mangold Interact (see 3.8.3). 
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Figure 7: ET Gaze with Gaze History 

The gaze coordinates are reproduced on a static image using algorithm for automatic mapping. In the 
simulation the aircraft are constantly moving and consequently the Areas of Interest (AOIs) on the 
screen change location. Procedures to improve the accuracy of the mapping are described in Vetter 
(2022). 

The static image was used to define static AOIs (the dynamic AOIs functionality in the software could 
not be used due to necessary manual corrections). For this purpose, rectangular AOIs of the same size 
were defined over the entire screen. Only the freeze button and the radar toolbox were explicitly 
marked (see Figure 8). 

  

Figure 8: Static AOI Creation of Screens 

With the software data frames for the pupil diameter of both eyes, the mapped gaze points in x and y 
direction and pixel coordinates, the gaze event duration, and AOI hits were generated for further 
analysis such as gaze plots, AOI plots and as input (raw gaze points in x and y direction in pixel 
coordinates stored every 10 milliseconds) for the CVT.  

3.8.2.2 Computer Vision Tool for Dynamic AOIs 

For several reasons (head movements etc.), automated dynamic AOI mapping from Tobii Pro Lab could 
not be used. A tailored solution using computer vision was designed by an employee of the Microsoft 
Robotic Lab. A description of the processing mechanisms for radar screen detection and for the 
localization of the ATCOS’ gaze is described in Appendix B. 
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By use of computer vision and other technologies the CVT detects aircraft and identifies when ATCOs 
were looking at aircraft. Inputs needed are raw gaze coordinates from ET records, log data from the 
ESCAPE Light simulation to define the exact positions of aircraft and screen recordings.  

The tool first searches for the screen in the ET recording using computer vision algorithms. Once the 
screen has been identified, the gaze in the ET coordinate system is transformed into the coordinate 
system of the screen. The positions of the aircraft on the screen are then identified with ESCAPE Light 
simulation logs. Image to text algorithms identify the labels corresponding to aircraft. With this the 
CVT tool recognizes when aircraft and aircraft labels are looked at by ATCOs. The exact process is 
described in the Appendix B. 

CVT is an efficient tool but has limits: The screen is not always correctly identified. ATCO head 
movements require the tool to constantly search for the screen and adjust the coordinate system. This 
leads to errors and inaccuracies. Background noise in the video impairs the algorithm from identifying 
the screen. For example, in some cases, another screen of similar size was in the background. If the 
screen is not recognised correctly, the gaze in the screen recording does not match the real gaze. For 
this reason, a confidence value was included. The tool estimates its confidence in a range between 0 
and 1, where 1 is best. Thus, the correctness of the tool can be estimated, and detections can be 
checked. Confidence was used to exclude data from analysis.  

3.8.3 Implicit Performance Measurement for Situation Awareness 

For implicit assessments of air traffic controllers’ situation awareness behavioural codes for radio 
communication were generated in Mangold Interact. Based on these codings different data frames 
were created to capture the way how ATCOs work (e.g., how many transfer calls they transmitted or 
at what time specific events were performed). These are described in the sections from Appendix D to 
Appendix I. 

3.8.4 Probe Technique for Situation Awareness 

To measure situation awareness aspects during the scenarios queries were asked in accordance to 
SASHA_L (Dehn, 2008) in experiment 2. The content of the queries was created by subject matter 
experts (SMEs). On average five queries were asked per scenario. Most of the queries were directed 
to conflicts and verified which conflicts were detected by ATCOs. For this purpose, questions were 
allocated at predefined sections of the scenarios. “Trick questions” were included to prevent priming 
ATCOs’ expectations. ATCOs were previously informed about all types of questions used. The exact 
queries are listed in Appendix A.2. 

AI SA was prompted with SPARQL queries of identical content at the exact same time using data from 
experiment 1. This allowed comparison of machine and human situation awareness and to provided 
AI SA inputs for human-machine team situation awareness in experiment 2. 

After each query, simulation was stopped for 20 seconds, giving the ATCO enough time to review the 
screen and respond. The pause was extended to 30 seconds in the military scenario (E2S4.1 and 
E2S4.2) because more information had to be communicated. ATCO's responses to queries were 
recorded and analysed. Several answers (conflict pairs) were possible for each conflict query.  
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Figure 9: Comparison of human and system SA 

How AI SA system proceeds to generate output is described in Section 1.2.1.5. More information about 
the algorithm is described in the concept of operations (see D2.1), the proof of concept for KG system 
(see D4.1 (AISA Consortium, 2021g)) and the final report. 

3.8.5 Scale Scores for ATCO Situation Awareness 

To interrelate different methods for measuring situation awareness and analyse consistency Pearson 
correlations (Benesty et al., 2009) were calculated. Scale scores were calculated for each measurement 
method.  

SASHA_Q (described in Section 3.8.1): An overall score is calculated for ratings of the six questions 
according to the procedure in Figure 10. A high score corresponds to a positive self-assessment of 
situation awareness. 

 

Figure 10: Scoring key for SASHA_Q 

SASHA_L (described in Section 2.1.2): The numbers of queries varies across scenarios and the possible 
number of answers to them, too. To avoid meaningless answers, only those queries were taken into 
account to which a clear answer can be given. Therefore, vague queries such as "What do you need to 
pay attention to?" were not evaluated and trick questions were excluded, too. In the E2S2.1 scenario, 
the first query is not scored because the question was asked too early. Thus, a total of 82 answers to 
the queries were included in the calculation of an overall score. The percentage of correct answers is 
calculated for each ATCO. A high score corresponds to many correct SASHA_L answers.  
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Eye tracking (described in Section 3.8.2): Accumulated time (minutes) to detect a conflict was used. A 
low score indicates a good situation awareness. 

Implicit performance measurements (described in Section 3.8.3): The overall score combines three 
aspects: Whether the ATCO recognised the conflict at all (aspect 1), when the resolution of the conflict 
was initiated (aspect 2), and the duration of the conflict (aspect 3). How the scores of aspects 1 and 2 
were calculated is shown in Equation 1 and  

Equation 2. The mean value of the conflict was subtracted from the individual ATCO’s value. The 
differences were summed up across all conflicts and divided by the average mean value of all conflicts. 
Aspect 3 is evaluated as follows: the ATCO gets one plus point for each conflict detected, one minus 
point if the conflict was not detected and no point if the conflict did not occur. The values of these 
three aspects are summed up in an overall score that expresses good conflict solution, if the overall 
score is low. 

Equation 1: Score calculation of implicit performance measurement aspect 1 

(∑ 𝑥𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 − �̅�𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡
# 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠
𝑛=1 )

�̅̅�𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛,𝑎𝑙𝑙 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠
 

Equation 2: Score calculation of implicit performance measurement aspect 2 

(∑ 𝑥𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒,𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 − �̅�𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒,𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡
# 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠
𝑛=1 )

�̅̅�𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒,𝑎𝑙𝑙 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠
 

An example data frames containing the scores per ATCO for experiment 1 is outlined in Appendix J. 

3.9 Measurement of Performance and Control Strategies 

Performance can be interpreted in terms of safety, efficiency, and orderliness (Griffin et al. 2000). 
Behavioural coding was used to observe ATCOs performance and control strategies.  

3.9.1 Behavioural Analysis of the ATCO 

To analyse the performance of an ATCO more objectively, discrete behaviours were observed 
combining simultaneously data from ET recording, screen recording, audio on communication 
between pseudo pilot and ATCO and inputs to the simulation to avoid misinterpreted or loss of 
information during the analysis. For this purpose, the Mangold Interact software was used. 

Clear signals that are visible in all recordings were used to synchronise the recordings: Eye tracking 
video was tuned to frontal video recording based on light signals or hand movements. The screen 
recording was matched to the eye tracking recording, as the screen can be seen in both recordings. 
Biometrical data were added with a sampling rate of 256 Hz. 

In Mangold Interact a sampling rate of 32 Hz was chosen as a trade-off to accuracy and computational 
requirements for the software. This will provide a rough impression on psychophysiological reactions. 
If higher accuracy is desired, the sampling rate can be adjusted accordingly for later analyses. 
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After the recordings have all been synchronised, the individual events performed by the ATCO and the 
conflicts that occur were coded. This allows to recognize preferences in working style of individual 
ATCOs and comparison of conflict detection of ATCOs and AI SA system. 

The events include all communication with the pseudo pilots (initial and assume calls, directs, 
transfers, flight level, heading and speed changes), measurements (usage of VERA tool and speed 
vectors) and other events (activation and deactivation of military areas, STCA warning, adapting label 
settings). Problems occurring during the simulation were recorded, too: e.g., failure of the screen, 
when the ATCO had problems with labels for a longer period of time, or when he discussed issues with 
the subject matter expert. 

The occurrence and duration of the events were coded in real time. Only the initial call was timed 
differently. This event started with the call from the pseudo-pilot and lasted until the ATCO had 
identified the aircraft. This became apparent by the ET recording and the mouse movement. 

Interrater reliability training included sessions with all raters and a subject matter expert with videos 
from each scenario to define the start and end of conflicts in a uniform way. The coding of the conflicts 
always started as soon as the conflicts were visible on the radar or as soon as they took place and 
ended when the ATCO recognised the conflict. In some cases, the ATCOs did not detect all conflicts. 
Then, the conflict is terminated in the coding at the time when the aircraft was transferred. It must be 
considered that the ATCO may have detected the conflict earlier than it was coded. However, detection 
of conflicts often required the use of assistance tools (e.g., VERA to measure the distance). So, most of 
the time, when a conflict was detected a first reaction was to measure the distance. Therefore, the use 
of VERA was taken as an indication for conflict detection.  

For each conflict, subject matter experts name the most obvious solutions. Thus, for each conflict in 
each scenario, the corresponding solution of the conflict could be coded for each ATCO. For the 
solutions, the duration of the event was not of great importance. It was relevant when the solution 
was applied. There are four different approaches for solving the conflict: 

• Level change: solving the conflict by changing the FL  

• Speed change: solving the conflict by adapting the speed  

• Direct: solving the conflict by changing the HDG or applying a direct  

• Confirm: solving a non-conformance by contacting the pilot again 

• No solution needed: when the conflict was solved, but it was not possible to identify the crucial 
event 

• No solution: when the ATCO did not solve the conflict 

3.9.2 Processing Behavioural Observation Data in R 

For implicit assessments of ATCOs’ situation awareness, behavioural codes for radio communication 
were used in observation. Based on the codings, different data frames were created that capture the 
ATCO’s work styles. These are described below. All these data frames take into account different 
events and solution approaches. The generated data frames are called: 
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• The counter data frame counts how often certain events (e.g., transfer, assume, speed vector 
change, etc.) occurred. Based on this data frame, it is possible to roughly estimate the mental 
workload of the ATCOs (see Appendix D) 

• The conflict comparison data frame determines the duration of the conflicts and the solution. 
It is used to determine if ATCOs had identified conflicts, how fast they were (quick/slow) and 
which solutions did not meet the standard (see Appendix E) 

• The reaction times data frame assesses how fast ATCOs react to initial calls. When they have 
detected the aircraft upon the pseudo-pilots’ first calls to Swiss radar (see Appendix F). 

• The checkbox data frame assessed ATCOs’ commands for each aircraft on the basis of code 
words (e.g., assume, transfer, speed, HDG, direct, climb, and descent). Whenever one of these 
terms was used in communication with an aircraft, it was coded accordingly. To compare 
ATCOs only aspects were included that needed to have occurred (see Appendix G). 

• The times comparison data frame extends the checkbox data frame. Each checkmark was 
replaced by the time stamp when the event occurred. This provides indication on how soon or 
late ATCOs deal with the events. Especially the time when the transfer call was made is 
interesting because it can be deduced how long the aircraft was on the frequency (see 
Appendix H). 

• The number of events per call data frame counts how many commands were given to the 
pseudo pilot in one single radio call. ATCOs with preserved situation awareness are expected 
to convey many commands in a single call for efficiency reasons - e.g., a direct command in 
the initial call (see Appendix I). 

• The number of conflict solutions data frame counts how many solutions were applied until a 
conflict was resolved. ATCOs with preserved situation awareness are expected to apply few 
steps to solve conflicts (see Appendix I). 

Based on these data frames, commonalities and differences in ATCOs actions could be analysed. 

3.10  Workload Measurement 

Workload was measures by subjective ratings and using psychophysiological parameters. 

3.10.1  Subjective Rating 

The Instantaneous Self-Assessment (ISA) measures the subjective workload using a single question 
that needs to be rated. ISA was developed to assess mental workload in ATCOs (Shahid et al., 2012). It 
provides an instantaneous grading of the workload by participants on a scale from 1 to 5 (see Figure 
11). 
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Figure 11: ISA workload rating 

Participants were familiarised with the workload question before the experiment started. A leaflet 
explaining the different workload levels laid next to them during the experiment. The workload 
questions were asked verbally during phases without radio communication between the ATCOs and 
the pseudo-pilot. The questions were asked several times during different phases of each interactive 
scenario. These phases were by subject matter experts in the planning of the experiments. 

3.10.2  Biometrical Analysis  

For event-based analysis of workload with biometric parameters, a total of eight specific events were 
selected with the help of subject matter experts. Those events represent a subset of all events that 
were analysed for situation awareness. Table 12 describes these events:  

Table 12: Definition of events in the scenarios of experiment 1 

Event Denotation Scenario Description 

Non-conformance E1S1 Non-conformance from SWR516 by not starting to 
descent after ATCO issues the clearance 

Quality of Service E1S4 Military training airspace Centre is available and thus, 
aircraft can get a direct-to through previously restricted 
airspace 

Deactivation MIL EAST E1S4 Military training airspace gets deactivated for civil 
aircraft and followingly they need to be redirected. 

Exit Crossing E1S4 Exit crossing between the IBK36FS and the EJU67NL. 

Crossing E1S4 Crossing between BTI8EP and FPO85J. 

Crossing E1S2 Consists of three crossings. First between FPO85J and 
BTI8EP and later between TVF4740, IBK1CH and the 
AFL2548. 

Speed Bust E1S3 Speed bust of the TOM4BA which is behind the VPBVV. 

Crossing E1S3 Crossing between the THY4CL and the IBK5VZ. 
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Except for the non-conformance event which did not occur in the simulation of five participants due 
to the interactive nature of experiment 1 all other event occurred in all simulations for all ATCOs. 

Measurement of biometric parameters were taken before, during and after finishing the experiment. 
This allowed to calculate an individual baseline across all “off-task” phases. With the baseline an 
individual’s absolute and relative change in parameter as a reaction to an event can be determined. 
All measurement phases which did not belong to a scenario (see Section 3.3) were aggregated in the 
baseline. The baseline is therefore an averaged value of measurements from a variety of “off-task” 
situations including the period prior to the simulation, during breaks between the scenarios and the 
period after the simulation until the debriefing questionnaire was accomplished. 

3.10.3  Blood Volume Pulse 

Blood volume pulse was measured on a finger with a blood volume pulse sensor from MediTECH using 
a photo-optical lens to measure pulse signal. The sensor was attached to a finger of the weaker hand. 
Signals were recorded with ProComp INFINITI (8-channel system) from MediTECH. BioGraph Infiniti 
software solution was used to calculate heart rate in beats per minute.  

3.10.4  Skin Conductance 

Electrodermal activity was measured with two skin conductance sensors from MediTECH each 
attached to one finger of the weaker hand to avoid impairment of mouse handling needed in the 
simulation. Signals were recorded with ProComp INFINITI (8-channel system) from MediTECH and 
processed with BioGraph Infiniti software solution. The unit of measurement is Siemens and is often 
used with the SI-prefix 𝜇 because the order of magnitude is a millionth. Since the skin conductance is 
the reverse value of resistance, an increase in skin conductance is equal to an increase in moisture (i.e., 
sweat) on the fingers, thus leading to a reduction of the resistance. 

3.10.5  Transformation of Biometrical Data for Analysis 

The output of the biometric measurements (e.g., beats per minute for blood volume pulse) were 
processed and analysed with the statistics software R and the console R Studio. Beside graphics for the 
distribution of raw values, the median (md) for parameters were calculated per ATCO and scenario. 
The median is less concerned by outliers than the mean and thus is expected to be free of artefacts 
from body motions. The corresponding measure of dispersion is called interquartile range (IQR) 
covering values from the 25 percent to the 75 percent quartile. To captures ATCOs’ trends per specific 
scenario the difference of the calculated median for the respective scenario and the off-task baseline 
was determined. This is necessary because of interindividual differences of body functions. Between 
subject comparisons can only be made on the basis of relative change to the baseline as a reaction to 
a specific scenario (see Equation 3 as an example for blood volume pulse). 

Equation 3: Relative change of blood volume pulse as a reaction to the specific scenario 

∆𝑚𝑒𝑑𝑖𝑎𝑛𝐵𝑉𝑃
 [%] =

𝑚𝑑𝐵𝑉𝑃𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
− 𝑚𝑑𝐵𝑉𝑃𝑜𝑓𝑓𝑡𝑎𝑠𝑘  

𝑚𝑑𝐵𝑉𝑃𝑜𝑓𝑓𝑡𝑎𝑠𝑘

∗ 100 

A positive value of change indicates a higher heart rate in the scenario compared to “off-task” baseline.  
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3.11  Statistical Analysis 

Calculation of parameter and scores, and statistical analyses were performed with R-Studio (version 
2022.02.0) and Excel (version 16.0.14326.20900). Data was saved in csv format and read into R for 
further processing. No special libraries were used. ggplot (Create a New Ggplot — Ggplot, n.d.) was 
imported to create the graphs. 

R studio was used for the following tasks: To sort the biometrical data and calculate the median, 
standard deviation and other parameters (Section 3.10.5), for boxplots (e.g., for biometrical 
parameters in Section 4.1.4), to extract eye tracking data (Section 3.8.2), to create gaze plots, AOI plots 
and dwell time plots (Section 4.1.3), for the analysis of behavioral coding to create the data frames 
described in Section 3.9.2 and evaluated with Excel, and for Pearson correlations (Section 3.8.5) and 
to compare performance and the workload (Section 4.1.2 and 4.1.4).  
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4 Results 

The result section is structured according to the research questions (1.3) with some additional chapters 
with further analyses on the AI situation awareness system. It starts with the topical section on human 
situation awareness, followed by a comparison of human-machine situation awareness (Section 4.2), 
and an exploration of the effect of human-machine team situation awareness on ATCO situation 
awareness and performance (Section 4.3). Results are described for the accuracy of the AI SA system 
(Section 4.4), for the AI SA system performance (Section 4.5) and the robustness of the AI SA system 
(Section 4.6). The Experimental Plan can be found in the Appendix L. 

4.1 Results on Human Situational Awareness 

Experiment 1 provided data to investigate how ATCOs proceed in gaining situational awareness and to 
compare situation awareness across participants. Data from simulation exercises were used as input 
for the AI SAS KG system to calculate estimations and make predictions.  

In experiment 1 three different techniques were used to measure the ATCOs’ situation awareness –  
a fourth technique was added in experiment 2: subjective rating, behavioural coding for radio calls and 
actions from interactions with pilots, gaze analysis with eye-tracking to retrace ATCOs' visual attention 
and probe technique (only in experiment 2). Results on ATCO situation awareness collected with these 
methods and the consistency across methods are described in the following sections. 

4.1.1 Descriptive Results on Situation Awareness Measures  

This chapter characterises ATCOs’ situation awareness by descriptive analyses for different measures 
(subjective rating-scales, implicit measurement, gaze analysis). This is followed by a short discussion. 

4.1.1.1 Subjective Rating of Situational Awareness in Different Scenarios 

At the end of each scenario in experiment 1 and after the interactive scenario in experiment 2 ATCOs 
subjectively rated their personal situation awareness. Mean scale values were calculated for SASHA_Q 
(Dehn, 2008) across the six subscales (see 3.8.1). Figure 12 depicts boxplots with mean values per 
scenario. On average ATCO self-rating scores for situation awareness vary between 20 and 33.  
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Figure 12: Boxplots for mean scale scores for SASHA_Q for all interactive scenarios in experiment 1 (N=20)  
and 2 (N=16) 

Subjects estimated their situation awareness highest in the scenario E1S1 of experiment 1, a short 
scenario with 19 aircraft. It was rated lowest in the interactive scenario of experiment 2 (E2S2.1) with 
23 aircraft. The mean score for subjective situation awareness varies visibly between the crossing 
scenario in experiment 1 (E2S2) and the identical scenario in experiment 2 (E2S2.1). This might be due 
to some differences in the overall setting: ATCOs participating in experiment 2 were asked queries 
about specific aspects of the situation and received AI SA inputs. This all might have led to a more 
explicit awareness of aspects that were missed by one’s own situation awareness. As it is visible from 
Figure 12 some ATCOs rated their situation awareness as very low in E2S2.1 (even zero).  

Discussion:  

On average the subjectively rated situation awareness was similar across the different scenarios. 
Under conditions that make ATCOs explore and reflect their situation awareness more specifically and 
with feedback on the correctness and comprehensibility provided by AI SA inputs, ATCOs are more 
critical in the judgment of their own situation awareness. Provided accuracy of machine situation 
awareness can be improved, this would offer ATCOs opportunities to validate their situation 
awareness, to learn about new aspects or aspects they have miss and develop more distinguished 
mental models. Machine situation awareness might provide a second opinion.  

4.1.1.2 Implicit Measurement of Situation Awareness in Different Scenarios 

ATCOs’ situation awareness is measured implicitly based on behavioural codes for their radio 
communication (see 3.8.2). This step included counting how often certain events occurred, how 
conflicts were solved, when aircraft were transferred and other aspects.  

Implicit measurement was analysed by the number of conflicts each ATCO had solved in total and how 
quickly conflicts were recognised. Figure 13 depicts ratio of conflicts solved to unsolved for the most 
challenging events in scenarios of experiment 1. Of all events analysed, the proportion of the events 
Quality of Service (QoS) solved by ATCOs was lowest (7 to 10 ATCOs out of 18 ATCOs).  
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Non-conformance in radio communication was detected by half of the participants (9 of 18 ATCOs). 
The exit crossing in the E1S4 scenario was also recognised and solved by only 10 ATCOs. The exit 
crossing was the only crossing event in the entire experiment 1 that was partially not solved. ATCOs 
had no problems solving all other crossings. Speed bust was the event solved by most ATCOs (15 out 
of 18 ATCOs).  

 

Figure 13: Most challenging events and conflicts from all scenarios from experiment 1 (N=18)* 
(* Reduction in N due to missing eye-tracking data for 2 participants; QoS: Quality of Service) 

Whereas Quality of Service issues are to some degree at an ATCOs discretion–how much optimisation 
in routing should be offered for individual aircraft- solving conflicts and detecting non-conformances 
are more vital for safety.  

Discussion: 

ATCOs performance on monitoring tasks such as conformance management, quality of service and 
conflict detection was measured in a simulation experiment with suboptimal work tools for ATCOs. 
Results show that ATCOs might profit from inputs from a system capable of machine situation 
awareness. It would need to be able to direct attention to important time-critical aspects, whereas 
other information might be provided in a more passive manner, leaving ATCOs focused on their current 
tasks. The misses - especially in the case of non-compliances - could be a side effect of relying on 
automation tools in daily operation. Future machine situation awareness might support training of 
situation awareness in regard to aspects most often missed by an individual ATCO or ATCOs in general 
and provide feedback on these aspects in specific exercises. This can counteract the complacency 
effect that extinguished redundancy in human-machine team situation awareness. 

4.1.1.3 Gaze-Based Analysis for Situation Awareness 

How do characteristics of the gaze behaviour influence the performance in detection of conflict? Figure 
14 depicts a scatterplot for duration for mean conflict detection and mean dwell time in scenario E1S2. 
Most of the 9 ATCOs analysed with eye-tracking had a mean dwell time around 4 minutes per aircraft 
aggregated from multiple gazes on that aircraft throughout the scenario. 
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Figure 14: Dwell time compared to conflict detection for E1S2 scenario (N= 9) 

Mean conflict detection time for most of the 9 ATCOs analysed was around 7 minutes. The two ATCOs 
with the longest mean dwell time detected conflicts on average either faster or much slower than the 
rest of the ATCOs. The remaining 11 ATCOs could not be included in this analysis, as they either had 
no eye-tracking data at all (N= 2) or the CVT tool (see 3.8.2.2) was not able to automatically map their 
gazes with sufficient confidence.  

Discussion: 

Intuitively it may be expected that ATCOs with average dwell-time would detect conflicts fastest. 
However, in a population of ATCOs that is strictly selected, such differences might be minimal. It is 
necessary to make more fine-grained analysis of dwell-time, but also the order of aircrafts scanned to 
get relevant insights about the relation of ATCO gaze behaviour and situation awareness. Long fixations 
(mean dwell time on aircraft) may indicate concentrated evaluation of information and enable fast 
conflict detection. In contrary, it may also be a sign of lack of understanding and go along with slow 
conflict detection. In combination with other features of gaze behaviour the findings on mean dwell 
time could possibly be interpret in a more distinct manner (e.g., number of revisits, average number 
of saccades or saccade velocity). Alternatively biometric parameters regarding the level of arousal and 
mental workload could be interesting to consider together with eye-tracking. It might provide 
information about mental states of high load and reduced capability for conscious information 
processing.  

4.1.2 Correlational Results on Situation Awareness Measurement Methods 

Research question Q1.2 investigates the consistency of different methods for situation awareness 
measurement. For this, overall scores were calculated for each situation awareness measurement 
method used - SASHA_Q, SASHA_L only in experiment 2, eye tracking for gaze analysis, implicit 
performance measurements (Section 3.8.5). The results of the correlations between the different 
methods are presented in this chapter. The Pearson correlation can take a value from -1 to 1, where 1 
corresponds to a strong positive relationship (both parameters increase or decrease in the same 
direction), whereas -1 expresses a perfect negative relationship (if on parameter increases, the other 
decreases vice versa). 
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Table 13 represents the correlation between the situation awareness measurement methods for the 
E1S2 scenario in experiment 1. Self-rating (SAHSA_Q) correlates moderately negative with conflict 
detection by eye-tracking (ET) (rp= -0.31; p= 0.4) and implicit situation awareness measurement  
(rp= -0.29; p= 0.2). The higher the subjective rating for situation awareness, the faster conflicts were 
detected (ET) and the shorter the conflict duration (implicit situation awareness measurement). And 
conflict detection (ET) correlated significantly positive with implicit situation awareness (conflict 
duration) (rp= 0.82; p< 0.001). The earlier conflicts were detected, the faster they got solved vice versa. 

Table 13: Pearson correlations between different categories of E1S2 scenario in experiment 1 
E1S2  SASHA_Q [score] 

N=20 

ET Conflict Detection 
[min] 

N=18 

Implicit SA : Conflict 
Duration [min] 

N=18 

SASHA_Q [score] 1 -0.3133 -0.2902 

ET Conflict Detection 
[min] 

 1 0.8152*** 

Implicit SA : Conflict 
Duration [min] 

  1 

* p < 0.05; ** p < 0.01; *** p < 0.001 

 

Table 14 shows the Pearson correlation of the E2S2.1 scenario of experiment 2, where all four 
measurement methods for situation awareness were used. The percentage of correct SASHA_L query 
answers showed a significant high negative correlation with the detection time for conflicts (rp= -0.79; 

p< 0.001) measured by eye-tracking (ET) and also with the score for implicit situation awareness 
measurements (rp= -0.71; p= 0.004). There is a significant high positive correlation between the conflict 
detection time (by ET) and the score for implicit situation awareness measurements (rp= 0.85; 

p=0.0002). So, if ATCOs detect the conflict earlier, the duration of the conflict is shorter, as they can 
start solving the conflict earlier. All correlations for questionnaire self-ratings (SASHA_Q) are non-
significant and low (rp= 0.15; p= 0.6 for SASHA_L; rp= -0.06; p= 0.8 for conflict detection (ET) and rp= 
-0.20; p= 0.5 for implicit situation awareness measurement).  

Table 14: Pearson correlations between different categories of E2S2.1 scenario in experiment 2 
E2S2.1 SASHA_Q [score] 

N=16 

SASHA_L 
Correct [%] 

N=16 

ET Conflict 
Detection [min] 

N=14 

Implicit SA: 
conflict duration 
[min] 

N=14 

SASHA_Q [score] 1 0.1508 -0.0621 -0.1985 

SASHA_L Correct [%]  1 -0.7932*** -0.7095** 

ET Conflict Detection 
[min] 

  1 0.8538*** 

Implicit SA : Conflict 
Duration [min] 

   1 

* p < 0.05; ** p < 0.01; *** p < 0.001  
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Discussion: 

Overall, the intercorrelations in Table 13 and Table 14 reflect generally moderate to high consistency 
for the different situation awareness measures with the exception of subjective situation awareness 
measurement (SASHA_Q) in experiment 2. Despite low or no correlation with other measurement 
methods subjective situation awareness ratings might be especially valuable when combined with 
objective feedback on perception of air traffic monitoring details (see 4.1.1.1). Self-monitoring 
capability is an important skill for accurate situation awareness, adaptation and developing expertise 
in a domain. Used as a single indicator self-rated situation awareness might lack reliability, as it rather 
measures a stable self-concept (“how good am I at monitoring”) than performance in monitoring tasks 
in a specific situation. But it seems to be receptive to specific feedback and critique in the sense of 
acknowledging the cognitive dissonance between expectation and real outcome.  

4.1.3 Group-Level Analysis for ATCOs with Preserved and Degraded SA 

For further analysis ATCOs who recognised conflicts fastest and resolved most conflicts were grouped 
as “preserved SA” (N=4). Vice versa ATCOs that detected least conflicts constituted the group 
“degraded SA” (N=3). 11 ATCOs with average performance on conflict resolution were assigned to 
neither group. They represent standard performance on detecting conflicts.  

4.1.3.1 Comparisons of ATCO Groups for Implicit Measurement of SA 

Results for all ATCOs in respect to implicit performance measures for situation awareness have been 
reported in section 4.1.1.2. This chapter focuses on the groups of ATCOs with preserved and degraded 
situation awareness. They are compared in regard to their interactions with pilots and (re)actions to 
events. (For a review of the relevant events see in Figure 13 in Section 4.1.1.2). 

ATCOs with preserved situation awareness: 

The best ATCO with preserved situation awareness missed one Quality of Service (QoS). The speed 
bust did not occur due to an error from the pseudo-pilot. The other ATCOs in this subgroup failed to 
solve two of the challenging events concerning a Quality of Service and an exit crossing.  

General: 
Common characteristics of these ATCOs are that they have made many transfer calls and have not 
duplicated any assume-calls, i.e., they only assumed aircraft once. Furthermore, the ATCOs’ behaviour 
was rather inconspicuous: all necessary commands were executed in time. They neither had an 
excessive number of calls nor very few. ATCOs accomplished many steps in interactions with pilots 
with one single radio call. These ATCOs needed only a few steps to solve a conflict. 

Evaluation of timing of radio calls: 
None of the ATCOs performed above or below average in their execution time for transfer calls and 
flight level changes. It could be expected that these calls were made early, which would indicate good 
situation awareness. However, ATCOs behave rather standard. Two of the ATCOs made rather quick 
calls. These results could indicate that the ATCOs did not immediately make the required transfers or 
flight level changes but waited a short time to see if all conditions were fulfilled or if they discovered 
an opportunity to find a better solution. However, an early transfer can also indicate that the ATCOs 
needed free capacity and therefore sent the aircraft away as early as possible. If transfers are carried 
out too late, the ATCOs could have forgotten about it which can be due to distraction of high workload.  
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Some of these ATCOs used CPDLC messages, and some did not. No pattern emerged in this regard. It 
shows that the use of CPDLCs is a matter of habit and cannot be attributed to good or bad situation 
awareness. 

Evaluation of measuring tool usage: 
A similar pattern was seen with the use of speed vectors. Speed vectors can be used to estimate 
distances and plan the next steps. ATCOs used the tool with different frequency. This suggests that 
speed vectors are a matter of habit. Compared to the VERA tool ATCOs use in their work, distances can 
be estimated more precisely. ATCOs used the tool less often compared to all other ATCOs. However, 
this might not indicate that they have good situation awareness, but rather that they might feel 
confident in having assessed the situation correctly. 

ATCOs with degraded situation awareness: 

ATCOs with degraded situation awareness had the lowest situation awareness regarding conflict 
resolution. They had problems performing the QoS and detecting the exit conflict in the military 
scenario (E1S4). They also had problems with the level bust. It seems that unexpected or not directly 
obvious conflicts caused problems to them. 

General: 
It was found that these ATCOs tended to make fewer transfer calls and more duplicate assume-calls. 
Two of the three ATCOs did not perform all necessary actions required by events: actions regarding 
each aircraft were missing which all other ATCOs had performed. No similarities occurred regarding 
the number of actions per call: One ATCO’s calls included very few actions whereas the others’ 
encompassed many actions. The ATCOs also differed in the number of steps per conflict solutions: one 
ATCO needed many steps while the others performed standard. 

Evaluation of timing of radio calls: 
Two ATCOs performed the transfer and flight level change calls very late, whereas one ATCO 
performed the transfer calls exceptionally early. As a result, the ATCOs with degraded situation 
awareness stood out with either fast or slow calls. 

CPDLC use is similar to the preserved ATCO group. Two ATCOs used it frequently, whereas one ATCO 
did not use it at all. 

Evaluation of measuring tool usage: 
The ATCOs did not often use the speed vectors and the VERA tool. It appeared that either one or the 
other tool was used preferentially. One-sidedness could be a risk for degraded situation awareness. 
These tools support assessing the situation and planning for the future. If they are not used 
appropriately, the situation might be misjudged. 

Discussion 

Comparison of ATCOs with a preserved situation awareness to those with degraded situation 
awareness showed differences in the timing of actions: ATCOs with preserved situation awareness 
executed actions neither extremely fast nor slow. The assumption that ATCOs with preserved situation 
awareness would perform transfer calls fastest can thus be refuted. It seems to be a sign of good 
situation awareness practice, if ATCOs neither rush nor hesitate. This is also confirmed when 
comparing all 18 ATCOs. The ATCOs who’s timing was either very early or late had more problems to 
solve conflicts. In contrast, ATCOs performing well on conflict solution tended to execute actions 
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average to fast. Best performing ATCOs executed more additional actions (e.g., transfer calls) 
compared to other ATCOs. ATCOs with degraded situation awareness performed less actions than the 
rest of the ATCOs.  

It is difficult to indicate generalizable signs of preserved situation awareness because ATCOs work 
consists of handling many interrelated events that need to be considered jointly. Difficulties in the 
degraded situation awareness group might be caused by general problems to adapt to the simulation 
environment and inconsistencies in the tools available compared to those at work. ATCOs who adapted 
well seemed to invest time in gaining an overview that allowed for a structured and efficiently 
organized approach. Speeding up might not be a good strategy because important information might 
be overlooked. 

4.1.3.2 Comparison of ATCO Groups for Gaze-Based Analysis of Situation 
Awareness 

To determine how scanning influences situation awareness, the ATCO groups with preserved and 
degraded situation awareness are compared regarding dwell time and frequency of gaze behaviour. 
Partially low confidence for automated mapping of areas of interests with the CVT reduced the number 
of ATCOs analysed to two for each group. Table 15 compares mean dwell time and mean dwell count 
of ATCOs with preserved situation awareness and degraded situation awareness for each scenario. 

Table 15: Dwell time and frequency comparison of ATCOs with preserved and degraded situation 
awareness 

 

Scenario Situation Awareness Mean Dwell Time [Sec] Mean Dwell Count 

E1S1 Preserved: 1.5 8.13 

  1.28 16.8 

 Degraded: 3.5 19.47 

  1.94 13.47 

E1S2 Preserved: 4.42 27.33 

  3.56 35.38 

 Degraded: 5.56 41 

  10.35 52.25 

E1S4 Preserved: 6.04 37.32 

  6.22 75.77 

 Degraded: 10.08 59.81 

  10.3 52.35 

E1S5 Preserved: 2.13 18.84 

  2.13 25.89 

 Degraded: 8 28.74 

  5.08 42.21 
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All scenarios of experiment 1 are analysed except E1S3 scenario, because from CVT are not available 
for this scenario. As a general pattern ATCOs with preserved situation awareness on average scanned 
aircraft for shorter time and looked at aircraft less often - their revisit rate was lower. There were 
exceptions to this: in the E1S1 scenario the mean dwell time was short for both groups and in the E1S4 
scenario one ATCOs with preserved situation awareness had the highest number of fixations on aircraft 
(mean dwell count). 

Comparison of the dwell time and frequency:  
Figure 15 shows dwell duration and dwell count per aircraft for one ATCO with preserved situation 
awareness (green dots) with one ATCO with degraded situation awareness (red dots). The size of the 
dots indicates how often an aircraft was looked at in the whole scenario. ATCOs with preserved 
situation awareness focused their attention less often on aircraft which do not require any ATCO 
clearances in all scenarios. For example, the difference in mean duration to the ATCO with degraded 
situation awareness for the HOP413F in the E1S4 scenario is 17.12 seconds. This aircraft only needs a 
flight level change, which is a routine task for ATCOs. ATCO with degraded situation awareness focused 
longer and more often on this aircraft. The same holds for BCS8531 the E1S5 scenario. 

 

Figure 15: Gaze duration and gaze count for aircraft per scenario of ATCO with preserved (green circles) and 
degraded situation awareness (red circles). Green aircraft labels indicate aircraft participating in a conflict 
(symbol marking on aircraft label for respective conflict); yellow aircraft needed a flight level change and black 
aircraft did not require much attention.  

In the E1S1 scenario the ATCO with degraded situation awareness looks at most aircraft more often 
(most red circles are bigger than the green circles) and for a longer time. Most red circles are in the 
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range between 2 and 10 seconds of mean dwell duration, whereas most green circles are in the range 
between 0 and 2 seconds. The ATCO with preserved situation awareness scanned more regularly and 
avoided fixations in E1S4, E1S5, and E1S1 scenarios. This pattern is not visible in the E1S2 scenario, 
where the ATCO with preserved situation awareness (green) also scanned less important aircraft. For 
example, the BAW881V is scanned for a long time although this aircraft is not important and requires 
few events. The complexity of this scenario is high, as can be seen by the number of aircrafts including 
many events. This could complicate ATCOs’ scanning.  

Comparison of scanning based on gaze plot: 
ATCOs were compared regarding their scanning pattern shortly before the conflicts occurred. For each 
conflict, two ATCOs were considered who solved the conflict well or quickly and two ATCOs who solved 
the conflict slowly or not. For this purpose, five different conflicts were selected: the multiple crossing 
and the level bust in the E1S2 scenario; the exit crossing and QoS conflict in the E1S4 military scenario 
and the non-conformance in radio communication in the E1S1 scenario.  

ATCOs who solved the conflicts scanned quickly and regularly and were not fixing on one point. The 
scanning followed a pattern.  

Triple Crossing: The triple crossing in the north was scanned similarly by all ATCOs. Once the aircraft 
were on the radar, they were scanned, and the conflicts were measured. However, since the aircraft 
were not yet on frequency, the ATCOs could not immediately intervene. Most ATCOs left the VERA 
tool active until they could solve the conflicts. In the meantime, they scanned the entire radar area 
again. As soon as the aircraft were on the frequency, the ATCOs gave the necessary instructions to 
solve the conflict. The ATCOs who turned off the VERA tool and used it again later scanned the 
conflicting aircraft more frequently before they could start solving the conflict. They did react to the 
conflict when the pilots were calling. Instead, they scanned the aircraft and solved the conflicts at a 
later point. The reason for this could have be that sometimes other aircraft report on the frequency, 
and therefore the ATCO’s attention got absorbed. This does not mean that these ATCOs per se had a 
degraded situation awareness. 

Level bust: ATCOs who did not solve this conflict were scanning faster and more frequently. Their focus 
was not on all aircraft but absorbed by the triple crossing. Even if ATCOs scanned the level busting 
aircraft they did not realize and react to the non-compliance. Their attention was absorbed by other 
aspects so they could not perceive the relevant information during scanning of the non-compliant 
aircraft. ATCOs who recognised the level bust realized it early. They regularly scanned all aircraft to be 
aware of other sorts of conflicts. 

Exit crossing: The exit crossing was evident from the start, but few ATCOs immediately responded to 
it. The ATCO who solved this conflict quickly scanned regularly and had few fixes. ATCOs who did not 
detect the conflict scanned the relevant aircraft but did not recognize the conflict between the two 
aircraft involved in the exit crossing. One of these ATCOs scanned all aircraft that were on the same 
flight level several times but did not detect the crossing. Another ATCO was focused on a potential 
crossing from the southeast. When the aircraft further approached the location with the exit crossing 
the focus was absorbed by different aircraft. 

QoS: In Quality of Service, all ATCOs scanned the aircraft around the Centre as it became available. 
There was concurrent requirement for attention by other aircraft shortly after the change in military 
activity. ATCOs who solved the QoS well scanned the aircraft around the Centre repeatedly. The ATCOs 
who detected fewer aircraft lost focus of the relevant aircraft because of other aircraft that needed 
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input at the same time. It seemed they had forgotten the aircraft that could profit from QoS. All ATCOs 
scanned all aircraft involved, yet no ATCO performed all of the possible QoS.  

Non-conformance: Although all ATCOs scanned the relevant aircraft while the non-conformance 
occurred or after the conflict was not always detected in the E1S1 scenario. Again, it is noticeable that 
when in the E1S1 scenario. In cases where the non-conformance was detected, this was done so 
shortly after it occurred. Those ATCOs specifically checked if the aircraft performed the required flight 
level changes, and thus the conflict was detected. The other ATCOs assumed that the aircraft complied 
with the flight level change and therefore overlooked the non-conformance even though they scanned 
the aircraft. 

Discussion: 

Although all ATCOs scanned the aircraft that could profit from QoS, the reaction was differently. ATCOs 
either did not perceive the opportunity for a QoS when they scanned the aircraft concerned or they 
judged this situation differently - did not consider a QoS necessary or useful. It is crucial to scan 
regularly and not to get fixed on single aircraft or conflict because more conflicts could arise at the 
same time. Free capacity – if available – can be used to check if aircraft comply with instructed changes. 
What caused some ATCOs to miss conflicts while others recognized them readily is difficult to judge. 
Even if aircraft were scanned regularly, not all conflict were detected. Scanning needs to be fast and 
regular but to be effective it might need to be slow enough to detect and extract relevant information. 
A requirement that is probably hard to keep up with when many aircraft are on the radar and conflicts 
start to pop up. To resist the urge to hurry up might be important. 

More obvious conflicts were generally solved faster, for example the triple crossing in the E1S2 
scenario where ATCOs needed to zoom out to see the aircraft calling in. However, the exit crossing in 
the military scenario E1S4 was visible from the beginning but attention was not directed to the conflict. 
Distance between aircraft was still at the beginning and other aspects seemed were more urgent at 
that time.  

4.1.4 Performance and Workload 

4.1.4.1 Intercorrelation of Performance Aspects 

The relationship between different aspects of performance is investigated with Pearson correlations. 
Radio communication duration and radio communication frequency with aircraft involved in conflicts 
represent implicit measures of workload.  

Table 16 shows intercorrelations among these aspects with the duration of conflicts and mean reaction 
time to initial calls.  

Correlations between the four performance aspects are low to moderate: rp ranges between -0.05 and 
0.31. Correlation of duration of radio communication with the frequency of radio communication (rpis 
low and positive (rp= 0.25; p= 0.3) and a moderately with the duration of conflicts (rp= 0.31; p= 0.2). 
The longer the radio communication duration, the more often ATCOs communicate. Correlation of 
duration of radio communication with duration of conflicts is moderate and positive (rp= 0.31; p= 0.2). 
The longer the radio communication duration was the longer it took ATCOs to resolve the conflict. 
Correlation of duration of radio communication with mean reaction time of ATCOs (rpto initial calls is 
very low and negative (rp= -0.05, p= 0.8). 
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ATCOs who were more busy communicating - indicating more workload with handling traffic - solved 
conflict slower when communication took longer (rp =0.25) and faster if they communicated more 
frequently (rp = -0.18). 

Correlations of the frequency of radio communication are low and negative with the duration of 
conflict (rp= -0.18, p= 0.5) and with the mean reaction time (rp to initial calls (rp= -0.17, p= 0.5). If ATCOs 
communicated more or less often did not matter for how fast conflicts were solved and initial calls 
were reacted upon. I.e., long conflict duration was present with many and with few radio 
communication calls to solve them.  

Table 16: Pearson correlation of performance measures 
E1S2 (N=18) 

Pearson 
Correlation 

Radio 
Communication 
(duration) [sec] 

Radio 
Communication 
(frequency) 
[count] 

Conflict Duration 
[min] 

Mean Reaction 
Times to Initial 
Call [sec] 

Radio 
Communication 
(duration) [sec] 

1 0.2462 0.3139 -0.05401 

Radio 
Communication 
(frequency) 
[count] 

 1 -0.1775 -0.1737 

Conflict Duration 
[min] 

  1 0.1085 

Mean Reaction 
Times to Initial 
Call [sec] 

   1 

 

Correlation of ATCO reaction time to initial calls and duration of conflict was low (rp= 0.11, p= 0.7). 
ATCOs who reacted faster to initial calls did not automatically recognize and solve conflicts faster 

Discussion: 

Correlations among performance aspects related to radio communication and to reaction time (time 
to respond to initial call in) and outcome (duration of conflict) are generally low indicating low 
consistency. These aspects of ATCO performance are independent. Longer duration of communication, 
but not the frequency of communication goes together with longer duration of conflict. Concerning 
implicit workload aspects of performance ATCOs who were more busy communicating - indicating 
more workload with handling traffic - solved conflict slower when communication took longer (rp 
=0.25), but faster if they communicated more often (rp = -0.18). However, the strength of relationship 
is rather weak and statistically non-significant.  

4.1.4.2 Psychophysiological Reactions to Events  

Workload was measured objectively with skin conductance and heart rate for phases where selected 
events occurred (see Section 3.10.2). This was done to investigate which events were most demanding 
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for ATCOs. For interindividual comparisons psychophysiological measures need to be related to an 
individual baseline to calculate relative changes in reactions (see Section 3.10.3 and 3.10.4).  

Figure 16 and Figure 17 describe the relative changes of the median heart rate and skin conductance. 
The straight black line at the value 0 represents the baseline against which the event-specific 
psychophysiological activation is compared (for description of baseline see ). Both parameters show a 
large range of variance which indicates that the magnitude of ATCOs’ reaction to events varies strongly 
for all events.  

The line within each boxplot in Figure 16 shows the median heart rate for the respective event. All 
event-related medians are lower than the baseline for heart rate calculated from all the phases that 
were not related to scenarios. This indicates that ATCOs’ heart rate activity and hence the workload 
level were lower during simulation when ATCOs handled air traffic than during all other phases (before 
and after simulation, during breaks between scenarios) that were taken as a baseline.  

 

Figure 16: Cumulated distribution of relative changes of the median heart rate 

Median heart rate level is similar for all events in Figure 16, the variance differs. Median heart rate was 
lowest for crossing in E1S4 scenario and highest for speed bust in E1S3 scenario. 

Figure 17 shows median values of electrodermal activity during specific events measured as skin 
conduction. For all events except the speed bust in E1S3 scenario the median skin conduction is below 
the baseline value and varies across different events. Variance is generally high, especially for crossing 
in E1S3 scenario. Skin conductance is highest in the speed bust event in scenario E1S3 and lowest in 
the deactivation MIL EAST event in the E1S4 scenario. Higher skin conductance indicates a reduction 
in skin conduction resistance associated that is associated with higher mental activation. ATCOs were 
most activated when the speed bust occurred and least activated when MIL EAST was deactivated. 
Redirecting aircraft to avoid an active military zone did not create any additional mental workload 
compared to the baseline – it was just the opposite.  
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Figure 17: Cumulated distribution of relative changes of the median skin conductance 

Discussion: 

Event-related analyses of psychophysiological parameters did not show significant elevation of mental 
workload compared to baseline. In contrary, ATCOs level of activation and mental workload was lower 
– they seemed more relaxed when working in the simulation than in off-task phases including phases 
before and after the simulation and during breaks between the scenarios. This can be seen as an 
indication of “flow” during work performance. Flow (Csikszentmihalyi, M., 1987, 2000) describes a 
mental state of total absorption (full concentration), that is reached, when someone experiences an 
optimal level of demand (neither too high, nor too low). Additionally, due to time constraints the 
baseline was not determined with a standardized method as suggested by the provider. Therefore, the 
baseline might include phases where ATCOs were nervous before the simulation experiment or 
frustrated after a scenario, when ATCOs were not satisfied with their performance or struggled with 
the unfamiliar simulation tool. As a second aspect it might be necessary to shorten the time span 
considered for accumulation of psychophysiological parameters. MIL EAST deactivation in scenario 
E1S4 for example lasted 10 minutes. Single peaks of psychophysiological activation might have been 
eliminated by averaging. Further analysis is needed for shorter periods of event-related parameters 
and a more homogeneous baseline should be used – possibly from a scenario with low complexity and 
high familiarity to ATCOs.  

4.2 Results on Comparison of Human and Machine Situation 
Awareness 

Research question 2.1 asked if artificial and human situation awareness are comparable. This question 
was investigated by comparing ATCOs’ and AI SA’s answers to queries about events related to en-route 
air traffic monitoring tasks. In experiment 2 ATCOs and AI SA system were compared in respect to their 
answers to queries (SASHA_L) on specific aspects of the situation. For this comparison FTTS of the 
University of Zagreb created outputs from raw data of the AI SA system applying filters, as the system 
implementation was still in progress. The filter sorted the AI SA system’s raw data to ignore irrelevant 
outputs. The results are presented in Table 17. The queries were labelled like in the Appendix A.2.  
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The fourth column of Table 17 shows the number of ATCOs who had named the respective aircraft in 
their query answers. Further to the right it is indicated if AI SA system detected the respective aircraft. 
(Note that the AI SA output was generated with 8 of 57 en-route monitoring tasks implemented.) The 
last column on the right indicates the correctness of the notion judged by two subject matter experts. 

Table 17: Comparison of query answers between ATCOs and AI SA system (N= 16 ATCOs) 

Scenario Query Answers # Selected 
by ATCO 

Mentioned 
by AISAs 

Valid 

E2S2.1 1.1 BAW842P & IBK1CH 

IBK1CH & TVF4740 

BAW577 & IBK36FS 

None 

0 

0 

5 

11 

X 

X 

X 

 

Yes 

Yes 

Yes 

no 

 1.2 IBK1CH & TVF4740 

TVF4740 & AFL2548 

None 

8 

4 

7 

X 

X 

Yes 

Yes 

no 

 1.3 BTI8EP & FPO85J 

TVF4740 & AFL2548 

TVF4740 & IBK1CH 

JAF81J & EXS82W 

None 

4 

3 

2 

1 

8 

X 

X 

X 

X 

 

Yes 

Yes 

Yes 

Yes 

no 

 1.4 IBK1CH & AFL2548 

JAF81J & EXS82W 

AFL2548 & RYR5QX 

BAW842P & TVF4740 

TOM51G & EXS440 

None 

0 

3 

2 

1 

1 

10 

X 

X 

X 

X 

 

Yes 

No 

Yes 

No 

No 

no 

 1.5 None 16  Yes 

E2S2.2 2.1 TVF4740 & IBK1CH 

TVF4740 & AFL2548 

BTI8EP & FPO85J 

RYR5QX & AFL2548 

IBK1CH & BAW842P 

RYR5QX & TVF4740 

None 

13 

6 

11 

0 

1 

0 

1 

X 

X 

X 

X 

X 

X 

 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

 2.2 TVF4740 & IBK1CH 

TVF4740 & AFL2548 

RYR5QX & AFL2548 

EXS82W & JAF81J 

TVF31WW level bust 

13 

3 

0 

1 

1 

X 

X 

X 

X 

X 

Yes 

Yes 

Yes 

Yes 

Yes 

 2.3 TVF31WW level bust 

No 

10 

3 

X Yes 

No 
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 2.4 Nothing 

EXS82W & JAF81J 

IBK1CH & AFL2548 

AFL2548 & RYR5QX 

6 

2 

1 

1 

 

 

X 

X 

No 

No 

Yes 

Yes 

 2.5 No 14  Yes 

E2S3 3.1 TOM4BA & VPBVV 

GAC818X & VPBVV 

GAC818X & TOM4BA 

GAC818X & TUI618P 

TUI618P & TOM4BA 

TUI618P & VPBVV 

None 

12 

3 

1 

1 

0 

0 

2 

X 

 

 

 

X 

X 

 

yes 

no 

no 

no 

no 

no 

no 

 3.2 TOM4BA & VPBVV 

ECLCX & DLH319 

DLH319 & TOM33H 

TUI618P & TOM4BA 

GAC818X & DAL467 

No 

5 

0 

0 

6 

7 

4 

X 

 

X 

X 

X 

 

yes 

yes 

yes 

yes 

yes 

no 

 3.3 TOM4BA & VPBVV 

ECLCX & DLH319 

DLH319 & TOM33H 

TUI618P & TOM4BA 

GAC818X & DAL467 

No 

2 

0 

2 

3 

3 

8 

X 

 

X 

X 

X 

yes 

yes 

yes 

yes 

yes 

no 

 3.4 Wrong readback 

Nothing 

5 

6 

 Yes 

No 

 3.5 TOM51G speed bust 

No 

3 

11 

X Yes 

No 

 3.6 Nothing 

EZY68HL transfer w/o 
climbing 

MAC236 needs to 
climb 

TOM4BA & VPBVV 

THY4CL & IBK5VZ 

ECLCX & DLH391 

GAC818X & TOM51G 

GAC818X & DAL467 

5 

5 

2 

2 

1 

3 

1 

1 

1 

 

 

 

X 

 

X 

 

 

 

no 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 
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The ATCO must zoom out very far in the E2S2.1 scenario to reveal the aircraft from the north 

(BAW842P, IBK1CH and TVF4740). Therefore, no ATCO has answered query 1.1 thoroughly and 

comprehensively. Since these aircraft are also not yet on the frequency, it is not severe that the 

DLH1300 needs to 
climb 

 3.7 TOM51G 

MAC236 

GAC818X 

12 

7 

8 

X Yes 

No 

Yes 

E2S4.4 4.1 HOP423F 15 X Yes 

 4.2 AFL788 

AFR31F 

BAW577 

BAW76D 

BAW881V 

MSOBM 

MAERO 

CCA862 

TVF31WW 

TOM51G 

5 

4 

12 

12 

11 

12 

6 

1 

1 

13 

X 

X 

X 

X 

 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

no 

yes 

 4.3 TOM51G & EJU67NL 

IBK36FS & BAW577 

No 

9 

5 

6 

X 

 

Yes 

Yes 

No 

 4.4 No 15  Yes 

E2S4.2 5.1 IBK36FS & EJU67NL 

No 

10 

6 

 Yes 

No 

 5.2 TVF31WW 

EXS440 

BAW842P 

EXS82W 

JAF81J 

RYR7RC 

TOM51G 

11 

11 

3 

6 

6 

6 

1 

X 

X 

X 

X 

X 

X 

 

yes 

yes 

yes 

yes 

yes 

yes 

no 

 5.3 BTI8EP & FPO85J 

IBK1CH & BAW842P 

IBK1CH & AFL2548 

None 

EJU67NL & IBK36FS 

FPO85J & VOE2SZ 

2 

2 

0 

8 

0 

1 

 

X 

X 

yes 

yes 

yes 

no 

yes 

no 

 5.4 No 15  Yes 
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conflicts are not detected. The AI already recognises the two northern conflicts and informs the ATCO 

about this. Therefore, the ATCO could recognise them in later queries about conflicts. Indeed, more 

ATCOs recognise the conflicts in the north in query 1.2 (8 ATCOs compared to 0 ATCOs in query 1.1). 

After query 1.3 and 1.4 there are again fewer ATCOs that name the crossings. The non-conformance 

query (1.5) is answered correctly by all ATCOs. 

In general, the crossings in the north are not detected by many ATCOs. Compared to the AI SA system, 

humans perform worse in this scenario. Moreover, the AI SA system detects conflicts much earlier. 

However, it fails to recognise a crossing at the beginning of the scenario and points out a crossing at 

query 1.4, which was declared non-relevant by the subject matter experts. 

E2S2.2 scenario was always performed directly after the E2S2.1 scenario. Since the two scenarios 

overlap, it was assumed that ATCOs could be aware of previous conflicts and recognise them more 

easily. This was confirmed by the data: More ATCOs named the crossings from the north, but still not 

all ATCOs. The level bust (it did not occur in the E2S2.1 scenario before) was mentioned by 10 out of 

20 ATCOs in query 2.3. The non-conformance query 2.5 was answered correctly by almost all ATCOs 

(14 of 16 ATCOs). Again, the AI SA system performs better for the same reasons as in scenario E2S2.1. 

In the E2S3 scenario, seven queries have been asked. Twelve out of 16 ATCOs recognised the speed 

bust between TOM4BA and VPBVV at the first question (3.1). However, the crossing between 

TUI618P and TOM4BA was recognised only by 6 out of 16 ATCOs–after the ATCOs received the AI SA 

input. The false readback in query 3.4 was only recognised by 5 ATCOs and the speed bust (query 3.5) 

only by 3 ATCOs. For query 3.7, many ATCOs named the correct aircraft. In this scenario, too, ATCOs 

perform less effectively than the AI SA system, especially in non-conformance queries. The AI SA 

system could not be asked about non-conformance “wrong readback”, as it cannot process radio 

communication data. It could not provide AI SA input to ATCOs on that aspect. 

In the E2S4.1 scenario query 4.1 was answered correctly by 15 ATCOs. For query 4.2, the majority of 

the ATCOs named most of the aircraft that could profit from a direct to. Only the AFL788 and AFR31F 

were not mentioned often by the ATCOs. ATCOs recognise more different aircraft that required a 

direct route than the AI SA system. Also, in the following query 4.3, five ATCOs mention a crossing 

that the AI SA system did not recognise. 15 ATCOs answer query 4.4 correctly, whereas AI SA wrongly 

indicated a non-conformance. In this scenario, it is no longer clear who has a better situation 

awareness. However, since the ATCOs identified more aircraft for a direct call, their situation 

awareness is considered better than artificial situation awareness in this scenario.  

In the E2S4.2 scenario 10 out of 16 ATCOs noticed the crossing between IBK36FS and EJU67NL from 

the beginning, so did the AI SA system. For query 5.2 about aircraft flying through military zone, two 

aircraft are named by 11 ATCOs, other aircrafts are mentioned only by 6 or 3 ATCOs. The AI SA system, 

in comparison, recognises all aircraft correctly. Also, in the query 5.3 about conflicts, relevant 

crossings were named by few ATCOs (only 2) or no ATCO. 8 ATCOs reported a crossing that was not 

considered relevant by subject matter experts. In the last query 5.4 about non-conformances 15 

ATCOs stated correctly that there was none–the AI SA system also reached this conclusion. In this 

scenario the AI SA system again had a better situation awareness–detected crossings and aircraft 

flying through the military reliably.  

Discussion: 
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Research question 2.1 asked if artificial and human situation awareness are comparable. This question 

was investigated by comparing ATCOs’ and AI SA’s answers to queries. From the results in Table 17 it 

looks – at first glance – as if the AI SA system had a better situation awareness than ATCOs. It correctly 

pointed out conflicts that in many times only a minority of ATCOs detected and sometimes even no 

ATCO named. However, it also indicated conflicts that were not present – as ATCOs also did. And some 

conflicts or events were missed by both. To interpret the results the circumstances of the experiment 

must be considered. These will be discussed in more detail in chapter 5. 

4.3 Evaluation of AI SA’s Contribution to Human-Machine Team 
Situation Awareness and Performance 

This chapter describes how AI SA inputs contribute to team situational awareness. For this purpose, 
behavioural coding is used to compare the ATCOs from both experiments and the SASHA_L responses 
are used to compare the ATCOs from experiment 2 with the AI SA. 

4.3.1 Evaluation of ATCO’s Performance Based on Behavioural Coding 

Research question 3.1 investigates if AI SA inputs enhance ATCOs’ performance. For that purpose, 
performance parameters for implicit measurement of situation awareness were compared across the 
condition “without AI SA input” in experiment 1 and the condition “with AI SA input” in experiment 2, 
using the identical scenario in both experimental runs.  

It is expected that AI SA contributes effectively to human-machine team situation awareness, e.g., by 
providing early warning of conflicts as well as alerts about non-conformances. Since only one scenario 
was interactive (E2S2.1) in experiment 2, only that scenario could be used for comparison. This allowed 
comparison of ATCOs’ traffic handling in regard to three crossings for which ATCOs without AI SA 
support can be compared with ATCOs that were supported by AI SA inputs.  

In both experiments all ATCOs solved the conflicts in the scenario. Table 18 shows on the left side how 
long the three conflicts lasted on average in the two experiments. In the second and third conflict 
ATCOs solved the conflicts faster. This makes sense since the AI SA system pointed out the conflicts 
early on and in most cases the ATCOs reacted to the message and detected the conflicts.  
However, ATCOs react slower on average to the first conflict in experiment 2 (with AI SA input) than in 
experiment 1.   
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Table 18: Comparison of conflict solution by ATCOs from experiment 1 (N=18) and 2 (N= 14) 

 

Were the ACTOs able to detect conflicts faster? Start of solution was only slightly earlier with AI SA 
inputs in experiment 2 and only in regard to 1 out of 3 conflicts. It was expected that ATCOs react to 
conflicts faster, when they received respective AI SA input. However, that was not confirmed in 2 of 3 
conflicts. 

Discussion:  

Results partially confirm the expectation from research question 3.1 – ATCOs solved some of the 
conflicts faster. Results showed that in 2 out of 3 conflicts, AI SA inputs allowed for faster conflict 
solutions. Except for the first conflict, where the AI SA input pointed to a conflict that most ATCOs had 
not zoomed out far enough to be able to see the aircraft involved in that conflict. So, the AI SA input 
came too early: Only few ATCOs reacted on the AI SA input by zooming out to localise the reported 
aircraft. That way the AI SA input was simply lost as a situation awareness prompt and the ATCOs did 
not react on it. The solution of that conflict on average hence also started late.    

On the other hand, ATCOs with AI SA input did not seem to profit much in terms of an earlier onset of 
the start of solution. This might also be due to their judgment and personal preference about when 
and how to address a conflict.  

In summary, some AI SA inputs enhanced ATCO performance, but support by AI SA inputs for early 
anticipation of conflicts was limited in its beneficial impact for conflict solving if it was delivered too 
early - when conflicting aircraft were noy yet in the ATCOs’ sector and were not yet on the frequency 
at the time the AI SA input was given. Hence, the ATCOs could not solve the conflicts immediately nor 
quickly. Therefore, an early start of conflict solution depends not only on how well ATCOs can process 
the AI SA input given in an oral format.  

Further analyses of performance in experiment 2 showed that ATCOs solve the conflicts more 
efficiently. That is, they need fewer clearances to solve the conflict. The mean number of clearance-
related actions in experiment 1 was 1.71 attempts compared to 1.33 in experiment 2. This might have 
been enhanced by early indication of the conflicts by the AI SA inputs that enabled the ATCOs to better 
assess the situation and organise their reaction to it. 

Execution-time to events was on average faster in experiment 1 than in experiment 2 (mean 
difference: 0.36 min). This might indicate that ATCOs from experiment 2 were absorbed by answering 
queries and listening to oral AI SA inputs and hence could not execute actions in this time span.  

 Conflict Duration [Sec] Start of Solution [Sec] 

Conflict Without AI SA 

Input (Exp.1 ) 

With AI SA Input 
(Exp. 2) 

 Without AI SA 
Input (Exp.1 ) 

With AI SA Input 
(Exp. 2) 

1. TVF4740 & 
IBK1CH 

53.4 59.4 412.13 461.41 

2. TVF4740 & 
AFL2548 

186.6 96.6 547.81 533.62 

3. FPO85J & 
BTI8EP 

156.6 119.4 470.5 548.01 
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Therefore, conclusions about the usefulness of machine situation awareness based on measured time 
to reaction and conflict solution should not be taken at that stage. 

In summary, there is evidence that AI SA input helped to perceive and solve conflicts earlier. However, 
it is important that the inputs are not given too early, otherwise the information may be lost – for 
reasons of working memory capacity–if it cannot be applied immediately and it creates memory load. 
Furthermore, it plays an important role how the inputs are transmitted to the ATCOs. If the inputs 
were displayed visually instead of oral inputs, ATCOs would have been less distracted, and the 
information were at disposition for later checks. In conclusion, the AI SA system contributed to conflict 
detection but still needs to be improved for conflict solving to be faster. 

4.3.2 Evaluation of Artificial Situation Awareness Based on Questionnaire 
Answers 

The inputs of the AI SA system were also analysed in a subjective manner to answer research question 

3.2 (usefulness of AI SA inputs) and 3.3 (use of AI SA inputs for situation awareness and decision 

making): ATCOs were asked for their judgement on each AI SA inputs in terms of relevance, accuracy, 

and trust.  

Table 19 shows results of ATCO judgements for relevance of AI SA inputs in the 5 scenarios 

investigated in experiment 2.  

Table 19: Evaluation of the AI SA inputs by the ATCOs regarding relevance (N=16= 

 

Scenario No of 
AI SA 
inputs 

Relevance of Input 

E2S2.1 6 On average across all inputs, 40% of the ATCOs identified the crossings inputs 
as relevant. 60% of the ATCOs felt that these inputs were somewhat irrelevant. 

E2S2.2 7 26% of ATCOs judged the crossing inputs as relevant. 74% of ATCOs felt that 
these inputs were rather irrelevant. However, the reference to the level bust 
was perceived as relevant by 88% of the ATCOs. 

E2S3 8 On average, 47% of the ATCOs described the inputs on crossings as relevant. 
53% of the ATCOs found these inputs somewhat irrelevant. The reference to 
the speed bust was considered relevant by only 44% of the ATCOs. The input 
that the TOM51G must climb to reach its exit level was only considered 
relevant by 2 ATCOs. 

E2S4.1 3 The input for aircraft that can get a direct was only considered relevant by 
6.25% of the ATCOs. The fact that the HOP413F must descend was only 
considered relevant by 12.5%. However, the input on the crossing was 
considered relevant by 18.8% ATCOs. 

E2S4.2 5 Input on the crossings was considered relevant by 58% of the ATCOs. The input 
on which aircraft fly through military was found relevant by 38% ATCOs. 
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With the results from experiment 2 that used an AI SA system with stage I of implementation (see 

1.2.4) it is not possible to confirm research question 3.2. Only few ATCOs acknowledge relevance to 

AI SA inputs at that time and in that manner (see 3.7).  

In summary, the AI SA inputs that the ATCOs considered relevant were those that pointed out 

conflicts that the ATCOs themselves did not recognise. This is exemplified by the input that the 

TOM51G must climb to the exit flight level. Most ATCOs themselves recognised this need in the high 

scenario (E2S3) and thus marked the input as irrelevant. The AI SA input about the crossing between 

IBK36FS and EJU67NL in the military 2 scenario (E2S4.2) on the other hand, was not recognised by 

any ATCO and thus marked as relevant. What is interesting, however, is that only 3 ATCOs recognised 

the speed bust in the high scenario, but this input was perceived as relevant by only 7 ATCOs. It seems 

that such a conflict is not considered to be a significant problem. Interestingly crossing inputs were 

generally perceived as less relevant, although some of the crossings were not recognised by the 

ATCOs. 

The results for accuracy and comprehensibility are summarised across all AI SA inputs. The accuracy 

of the AI SA inputs was acknowledged by more than 50% of all ATCOs for all AI SA inputs across all 

scenarios (for each scenario: E2S2.1: 52%, E2S2.2: 57%, E2S3: 64%, E2S4.1: 79%, E2S4.2: 65%). 

Highest agreement was found for the level bust in the high traffic scenario: 14 out of 16 ATCOs agreed 

that this AI SA input was accurate. 

The comprehensibility of the AI SA inputs was generally affirmed by more than 50% of the ATCO for 

all AI SA inputs across all scenarios (for each scenario: E2S2.1: 53 %, E2S2.2: 67%, E2S3: 67%, E2S2.1: 

77%, E2S2.2: 77%). 

How much ATCOs trusted the AI SA inputs was assessed for each scenario. Trust varied between the 

scenarios. The E2S2.2 scenario scored lowest: most ATCOs did not trust the AI SA inputs and–

compared to the four other scenarios – the fewest ATCOs trusted the AI SA inputs. Overall, 51% of 

ATCOs rated the AI SA inputs of all scenarios as trustworthy, 23% tended not to trust the inputs, and 

26% were neutral. In the final debriefing, the ATCOs were again asked how much they would trust an 

AI SA system in the future. Again, 50% of ATCOs selected a medium or high level of trust, 31% ATCOs 

were neutral, and 19% ATCOs had low trust in AI SA system. 

Figure 18 compares the level of trust ATCOs have in current automation at ATCO working position 

with trust they have in AI SA system. 11 out of 16 ATCOs clearly trusted Skyguide’s system Skyvisu 

compared to AI. However, ATCOs willingness to trust a future AI SA system is somewhat lower (8 out 

of 16 ATCOs). 3 ATCOs distrusted AI to some extent. The strongest level of distrust was not indicated 

neither for current system automation nor for AI-based system. So, ATCOs indicated that they are 

rather open to the potential of AI-based support. Compared to Skyvisu, which is an advanced system 

with many supporting tools, the AI SA system did not seem helpful at the first moment, as some 

information and tools are still missing. ATC is a safety-critical area, and therefore an AI SA system 

must be functional at 100% of the times so that no errors can occur.  
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Figure 18: How much do you trust 1) the automation implemented in Skyvisu and 2) AI SA inputs at work in 
future? 

ATCOs’ openness to a new functional system was emphasised also by the fact, that 11 out of 16 ATCOs 

testified in the debriefing questionnaire that they could imagine working with an AI-based tool in the 

future, whereas 5 ATCOs indicated they were not sure. 

To answer research question Q3.3 ATCOs were asked at the end of each scenario, if they had used AI 

SA inputs for their situation awareness and decision making. Figure 19 shows the results for use of AI 

SA inputs for situation awareness in experiment 2. Green indicates agreement that AI SA inputs were 

supportive for situation awareness. Only a quarter of the ATCOs or less did indicate they used AI SA 

inputs for their own situation awareness. Overall, the results indicate insufficient support for the 

expected subjective usefulness of AI SA inputs for situation awareness. 

 

Figure 19: Did AI SA inputs support your situation awareness overall? (N= 16)  

https://www.sesarju.eu/


DELIVERABLE 5.2 
REPORT ON HUMAN-MACHINE DISTRIBUTED SITUATION AWARENESS 
 

 

  
 

Page I 99 
 

  

 

Figure 20 shows the ATCOs responses to the question whether they could use AI SA inputs for their 

decision making. Again, the green colour indicates that the ATCOs used AI SA inputs in their decision 

making. Supportiveness of AI SA inputs for decision making was judged very low (only 2 to 3 out of 

16 ATCOs). Therefore, these results did not support research question 3.3 neither. 

 

Figure 20: Did AI SA inputs support your decision making? (N= 16) 

Discussion: Although some ATCOs failed to detect conflicts on their own, AI SA input was rated 

poorly. A possible reason for this may be that ATCOs sometimes did not have the capacity to listen to 

and implement the AI SA inputs. This was seen when ATCOs did not mention conflicts in their answer 

to queries, although the AI SA input made a message about it before. If the ATCOs cannot implement 

the AI SA inputs, the artificial situation awareness cannot support the situation awareness and 

decision-making. Additionally, many of the AI SA inputs were mentioned early, where ATCOs might 

have felt distracted as there was nothing urgent about them. By the time this information would have 

been relevant for ATCOs, they might have forgotten them already.  

This is affirmed by some of the ATCOs’ critique that AI SA inputs were given at inappropriate times. 

As a result, the significance of the inputs was often lost because the ATCOs could often not directly 

work on the conflicts, as the involved aircraft were not yet on frequency, for example. In those cases, 

AI SA inputs represented more a load for memory than an immediate help. Another criticism was that 

the inputs were transmitted orally and not visually. Visual inputs would have allowed ATCOs to access 

and incorporate the input when needed and check them later as often as needed. This point of 

criticism was expected but could not be prevented due to time constraints. Some ATCOs have also 

mentioned that the information was missing where the aircraft from the inputs are located. When 

ATCOs searched for the respective aircraft, they might have lost the capacity to listen carefully to the 

inputs. Furthermore, the AI SA system should be able to point out unresolved conflicts several times 

and emphasise the urgency. The inputs should also include when the crossing occurs in minutes and 

miles. This way, the situation could be assessed more thoroughly. 
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4.4 Results on the Accomplishment of Artificial Situational 
Awareness 

Experiment 1 has provided flight data that was used as input for the KG system, to analyse machine 
situational awareness.  

Following analyses were performed: 

• Knowledge graph and task analysis   

• Analysis of conflict detection ML module predictions regarding situations of interest   

• Analysis of conflict detection ML module predictions regarding conflicts 

• Situational awareness level analysis 

The results are presented in the following subsections. 

4.4.1 Results of Knowledge Graph and Task Analysis 

After the list of the situational awareness indicators explained in Section 3.7.1 had been defined,  

a comparison of situational awareness of the KG system and ATCO was performed. There are a total 

of 20 different exercises selected at random, one per every participant in experiment 1. There are four 

different scenarios from which those exercises had been selected. The comparison of the KG system 

and human situation awareness was done for each aircraft in a scenario, for the duration of the whole 

exercise. Indicators for degraded situational awareness presented in the previous section studied 

through 7 different categories listed below:   

• Heading/direct: every situation when an aircraft was cleared on a heading or a direct route  

• Level change: every situation when an aircraft was cleared to climb or descend  

• Rate: every situation when an aircraft was cleared to change its flight level at a rate  

• Speed change: every situation when an aircraft was cleared to fly at cleared Mach number  

• Transferred: every situation when an aircraft was transferred to the next sector within the 
duration of the exercise  

• Assumed: every situation when an aircraft was assumed on the label after the initial call  

• Military: every situation when an aircraft had a route that will cross a military sector when 
active  

For every aircraft, each of the above-mentioned situations was counted and added to the list of cases 

of degraded situational awareness if any of the objective indicators explained in Table 11 showed a 

loss of situation awareness. Figure 21 presents all the situations when the KG system correctly assessed 

the traffic situation, or the ATCO took action that can prove there was not any degradation of situation 

awareness. The results from all 20 exercises were summarised. There is a significant discrepancy in the 

number of situations between some categories. That is due to the fact that some ATCO instructions, 

such as vertical rate change or speed control, occur only a couple of times in the scenarios, while there 

are significantly more aircraft that entered the sector and were assumed during the scenarios. As seen 

in Figure 21, there are many situations when neither ATCO nor the KG System suffered any loss of 

situational awareness.  
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Figure 22 shows all the situations where there is proof of degraded situational awareness for the 

human or the KG System. Note that the scale is different in Figure 21 and Figure 22. As seen in  

Figure 21, there are not any cases of KG System situation awareness degradations. All the tasks that 

were used to monitor traffic successfully kept track of all changes in the flight data. Therefore, what is 

represented in Figure 22 are cases of human situational awareness degradation. There is also some 

discrepancy in the number of situations in Figure 22. There are not any cases of loss of situation 

awareness in the “Heading” category, but 12 cases in the “Level change” category because there were 

intentional non-compliances by the pilot regarding the flight level change, but none regarding the 

change of heading. The overall number of situations indicating degraded situational awareness in every 

scenario is shown in Figure 3. E1S1 scenario has the lowest count of situation awareness degradations 

because it is the shortest scenario with the fewest samples being analysed. In other scenarios, the 

number of situations indicating reduced situational awareness is approximately equal. E1S3 scenario 

has a lower number of those situations compared to E1S2 and E1S4 because the planned non-

compliance related to Mach number did not occur in every exercise. It was dependant on the ATCO 

clearance and was therefore not always issued. 

 

Figure 21: Objective count of occurrences of preserved SA 

  

Figure 22: Objective count of occurrences of degraded SA 
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The conflict detection ML module prediction accuracy analysis was performed for one exercise per 

participant in experiment 1, leading to a number of 20 different exercises. The scenarios are not equally 

distributed among the 20 chosen exercises; there are 2 exercises based on the E1S1 scenario and the 

other 18 exercises are divided between E1S2, E1S3 and E1S4, each scenario being used 6 times. In 

Section 4.4.1, the total distribution of the degraded situation awareness occurrences classified per 

type is presented. Figure 23 shows the overall number of occurrences of degraded human situation 

awareness grouped by scenario. 

 

Figure 23: The overall number of occurrences of degraded human SA 

4.4.2 Results on Conflict Detection ML Module Predictions Analysis 
Regarding Situations of Interest 

By using two approaches of analysis described in Section 3.7.2, it is possible to recognise those module 

outputs in which the conflict detection ML module predicts false-negative results (aircraft pairs with 

actual minimum distance less than 10 NM, for which the conflict detection module predicted a value 

higher than 10 NM) and false-positive results (aircraft with actual minimum distance more than 10 NM 

for which the conflict detection module predicted a value lower than 10 NM). False-positive results or 

Type I error (false alert), and false-negative results or Type II error (missed alert), are presented in 

Table 20. Type I errors are more common than Type II errors – there are fewer results in which the 

conflict detection module predicts that the aircraft pair is not a situation of interest than there are 

results in which the module predicts that the aircraft pair is a situation of interest. True-positive and 

True-negative contain results where predicted and actual values are equal. Both values are greater 

than 10 NM for True-negative or both values are less than 10 NM for True-positive results. 

Table 20: Type I Error and Type II Error results 

 

 Actual 

Predicted 

 Positive Negative 

Positive 131 110 (Type I error) 

Negative 92 (Type II error) 449 
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The prediction for an aircraft pair can therefore be within Type I Error, Type II Error, or True 

Positive/Negative. The exceptions that are rarely present are shown in Figure 24. “NaN” results are 

aircraft pairs that the conflict detection module predicted as a situation of interest but at an incorrect 

time, e.g., when the conflict module prediction is made at a time when the aircraft have already passed 

the point of the actual minimum distance between them. The presence of the “NaN” results at the 

time when the aircraft pair is at the minimum distance is a result of the “black-box” effect, an effect 

which is a product of ML algorithm that is impenetrable and cannot be straightforwardly defined. 

Diverging traffic output – when the conflict detection module predicts a situation of interest when the 

distance between aircraft is increasing – is the least represented in the results.  

From the graph in Figure 24 it can be recognised that the percentage of aircraft pairs that are initially 

or finally predicted as a situation of interest (True-positive) and aircraft pairs predicted as a situation 

of no interest (True-negative) by both ATCO and module are the most represented. Type I Error and 

Type II Error account for less than one third of the analysis results.  

 

Figure 24: Distribution of the initial and final prediction analysis results 

 

Multiple correlation analysis used to prove a correlation between the ML module training data and the 

predicted minimum distance accuracy showed that these variables are not statistically related. The 

results are presented in Appendix K.  

4.4.3 Results on Conflict Detection ML Module Predictions Analysis 
Regarding Conflicts 

For all conflicts that are initially implemented in scenarios or those caused by the action of ATCO, it is 
possible to assess the performance of human and conflict detection module. In Section 3.7.3 Conflict 
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detection ML module analysis the methodology of the analysis is introduced as well as the difference 
in defining the situation of interest and conflict.  

For each exercise, aircraft pairs which are in conflict were selected and the following was checked: 

• did the ATCO recognise the conflict and acted promptly on it (human accurate), 

• did the ATCO omit conflict that led to the loss of separation (human inaccurate). 

After evaluating what the ATCO actions were, it was checked and compared what the conflict detection 
module outputs were for the same conflicts. The following was checked: 

• did the conflict detection ML module accurately predict conflict (CD module accurate), 

• did the conflict detection ML module predict conflict but with inconsistent values (CD module 
inconsistent), 

• did the conflict detection ML module omit conflict (CD module inaccurate). 

The comparison of ATCO and CD module performance per scenario is depicted in Figure 25. Accurate 

CD module predictions recognised the conflict and changed the predicted values as ATCO resolved the 

conflict. Inaccurate CD module predictions recognised the conflict, but values did not change as ATCO 

resolved the conflict. Inaccurate CD module predictions did not recognise conflict or predicted values 

did not match at all. 

With the E1S3 scenario having the most conflict, the most human and CD module accurate predictions 

are present in that scenario. Vice versa, E1S1 scenario having the least conflicts also has the least 

human and CD module accurate predictions. For the CD performance analysis, it is important to 

emphasise that column height indicates only the total number of occurrences in the observed scenario. 

To check what the ratio of accurate, inaccurate, and inconsistent occurrences is, it is necessary to look 

at the colour distribution. For example, the number of inaccurate and inconsistent predictions in E1S4 

scenario is equal to the accurate predictions. E1S4 scenario has the highest number of ATCO omissions 

which is explained by it being the longest scenario and with the TRAs being activated and deactivated.  

 

Figure 25: Comparison of conflict detection ML and human performance 
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4.4.4 Results on Levels of Situational Awareness 

AISA ConOps proposed the use of an existing framework for AI system awareness level assessment. 
The framework, described in the “Theory” chapter of this document (see section 2.2.2), defines a set 
of 7 conditions whose fulfilment places the AI system into one of 6 awareness level categories (with 
Awareness Level 0 denoting a system with low awareness and Awareness Level 5 a system with highest 
awareness). The conditions are divided into conditions for awareness of a certain property and for 
awareness of the system itself (or self-awareness), while no subdivisions are defined for the awareness 
levels. 

For the purposes of classification of the AI SA KG system, a border is set between the AI SA KG system 
(consisting of a KG, AI SA tasks and ML modules) and the simulator on the input side and the ATCO on 
the output side. Conditions defined in the framework and listed earlier in this document will be 
analysed from the perspective of the system and exemplified. The fulfilment of these conditions will 
then be used to classify the AI SA KG system on the awareness level scale. 

For each condition in Table 21 and level requirement in Table 22, only the best performing sub-system 
was chosen to represent the system. This aims to show that, while not all parts of each awareness level 
are fulfilled to the same degree and by the whole system, most conditions and requirements presented 
in these tables can be fulfilled by the AI SA KG system. 

Table 21: AI SA condition fulfilment estimate 

Condition Code Condition Description AI SA KG System Function 

(C.1) Subject makes physical 
measurements or 
observations that are used 
to derive the values of 
property P by means of a 
meaningful semantic 
interpretation. 

Measurements and observations from which values of a 
property can be derived are gathered from the various 
data sources the AI SA system has at its disposal. For 
example, the simulator delivers the values of flight 
information such as flight level, speed, position and 
others.  
A meaningful semantic interpretation consists of 
mapping gathered measurements to values of a 
property and choosing the appropriate interpretation if 
mapping results in more than one interpretation. Since 
the conversion of values (from data files to RDF graphs) 
maps values to properties directly, only a single 
interpretation is possible. The properties (flight level, 
speed, position, flight etc.) are, of course, meaningful in 
the context of ATC, so all parts of the (C.1) condition are 
fulfilled.  

(C.2) The semantic interpretation 
is robust. 

The robustness of semantic interpretation is the task of 
SHACL rules. In case of faulty inputs (originating, in this 
case, from either human error or the program tasked 
with converting data to RDF format), the system returns 
an error and points to where the error occurred and 
why. SHACL rules may only detect some, instead of all, 
erroneous inputs. Therefore, robust semantic 
interpretation is accomplished, but not fully guaranteed. 
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(C.3) There is a semantic 
attribution which is 
meaningful. 

Semantic attribution, the process of mapping values of a 
property to a desirability scale, is performed by AI SA 
tasks by comparing the values to those defined by the 
goals (e.g., cleared values). Values are then implicitly 
graded as desirable/equal to cleared or not desirable. 
An example of a system property being checked for 
desirability is the system’s inspection of the conflict 
prediction ML module – it is checked for desirability of 
input data by comparing it to the statistics of the 
module’s training set. 

Not all values are mapped to a desirability scale – we 
deem this to be acceptable because desirability (beyond 
the base test that are the SHACL rules, which are 
already applied to all properties) cannot be established 
for properties such as callsigns or statistical values of 
conflict ML module training data. 

(C.4) The subject’s reaction to its 
perception of P is 
appropriate. 

The AI SA KG system achieves appropriate reaction to the 
perception of properties by 

• analysing and storing property values 

• using property values for creating other properties 
and computing their values 

• creating appropriate outputs for property values 

(C.5) A history of the evolution of 
the property over time is 
maintained, in particular of 
the increasing or decreasing 
deviations over time. 

History of evolution of each property is easily accessible 
since each situation graph is stored in the KG, along with 
output graphs created by each task. 

Increasing or decreasing deviations can be tracked 
through task outputs – they are implicit in outputs such 
as “Aircraft is not at CLFL.”  and “Aircraft is descending 
towards CLFL.” 

(C.6) The subject can assess how 
well it meets all is goals, 
thus having an 
understanding which goals 
should be achieved and to 
which extent they are 
achieved. 

Goals of the AI SA KG system are represented in the KG 
via cleared values. Coupled with the AI SA tasks, the KG 
can state which goals are achieved (e.g. “Aircraft is at 
cleared speed.”) or are currently being achieved (e.g. 
“Aircraft is climbing towards CLFL.”). 

(C.7) The subject can assess how 
well the goals are achieved 
over time and when its 
performance is improving or 
deteriorating. 

The AI SA KG system runs all tasks and can, by analysing 
the outputs, check the status of each goal and its 
changes through the scenario. The storing of task 
outputs ensures goal completion can be assessed over 
time. 
Tasks related to the operation of the conflict detection 
ML module monitor both the status of each conflict 
(which are some of the goals of the system) and the 
performance of the module itself (the correctness of 
each prediction). 

 

As shown in Table 4, the framework recognised 6 levels of AI system awareness. The table is repeated 
here, modified to show how the extended AI SA KG system fulfils the requirements of each level. 
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Table 22: AI SA awareness level estimate 

Awareness Level Necessary Conditions 
to reach Level 

AI SA KG System Function 

Awareness Level 0 System output is a 
mathematical function of 
inputs (always reacting in 
the same way to inputs)  

System fulfils conditions 
(C.1) to (C.4) 

The AI SA KG system consists of computer code which, 
for identical inputs, always produces the same output.  
Conditions (C.1), (C.3), (C.4) are shown to be fulfilled by 
the AI SA KG system in Table 20.  
Condition (C.2) is partially fulfilled (since it’s not 
guaranteed) so Awareness Level 0 requirements can be 
thought of as partially fulfilled as well. 

Awareness Level 1 System is adaptive, meaning 
that it tries to minimize the 
difference between input 
and reference values by use 
of a PID controller or similar 
algorithm  

System fulfils conditions 
(C.1) to (C.4) 

The AI SA KG system fulfils the adaptiveness condition 
through the outputs of the KG system – by having the 
outputs point toward the difference between actual and 
goal values, the system affects the actions of the ATCO, 
thus ensuring the minimisation of the differences. 
Conditions (C.1), (C.3), (C.4) are shown to be fulfilled by 
the AI SA KG system in Table 20.  
Condition (C.2) is partially fulfilled (since it’s not 
guaranteed) so Awareness Level 1 requirements can be 
thought of as partially fulfilled as well. 

Awareness Level 2 System is aware of at least 
one (system) property and 
one environment property 
according to (C.1) to (C.4) + 
(C.6) 

System contains an 
inspection engine which 
periodically derives one 
integrated attribution of the 
system as a whole 

System computes its actions 
based on (a) monitored and 
attributed properties of the 
system and of the 
environment, (b) attributed 
expectations on the system 
and on the environment, 
and (c) sets of goals on 
system and environment 
properties 

The AI SA KG system is aware of both environment 
properties (such as aircraft trajectories) and system 
properties (such as conflict detection module 
performance) in ways prescribed by conditions 
necessary for this level. Apart from condition (C.2), 
which is fulfilled partially as described in the previous 
table, the conditions are fulfilled. 
The inspection engine condition is fulfilled by the 
conflict detection module – tasks which check the 
desirability of module inputs (against training data 
statistics) and outputs (by way of the “sanity check” and 
basic comparison calculations) are a way for the system 
to analyse itself. 
The AI SA KG system does compute necessary actions 
according to the values of properties defined in the KG 
(such as the already mentioned aircraft FLs or conflict 
detection module performance), the expectations on 
itself and the environment (which are defined by the 
SHACL rules and completeness of the KG) and goals 
(which are contained in the KG). 

Since the expectations on the system are contingent on 
the functioning of SHACL rules, this condition and 
awareness level cannot be guaranteed to be fulfilled. 
For this reason, Awareness Level 2 is reached partially.  

  

https://www.sesarju.eu/


DELIVERABLE 5.2 
REPORT ON HUMAN-MACHINE DISTRIBUTED SITUATION AWARENESS 
 

 

  
 

Page I 108 
 

  

 

Awareness Level 3 System fulfils all 
requirements of an 
Awareness Level 2 system 

System fulfils the history 
conditions (C.5) and (C.7) 

The history conditions are fulfilled as demonstrated in 
the “Conditions” table – each timestamp’s traffic data 
and task output graphs are stored in the KG and easily 
accessible. Combined, they form a history of each 
property and property value where values are direct 
proof of deviations. The improvement and deterioration 
are demonstrated only for appropriate properties – e.g. 
conflict detection module performance. 
The fulfilment of Awareness Level 2 system 
requirements is shown in the cell above. Since the 
previous level is reached only partially (because 
fulfilment of some conditions cannot be guaranteed), 
Awareness Level 3 is also reached partially. 

Awareness Level 4 System fulfils all 
requirements of an 
Awareness Level 3 system 

System’s decision-making 
process involves a 
simulation engine which can 
predict the effects of actions 
on the environment and the 
system itself and, in case of 
an anomalous result, can 
search through simulations 
for the best action 

Simulation engine requirement is completed by the 
machine learning modules. They can use each traffic 
data graph as input and calculate how modifications of 
certain property values can lead to different traffic 
outcomes. A voluntary number of repetitions (with 
unique value modifications) can be performed, and the 
results parsed for the optimal action (or actions). 

The fulfilment of Awareness Level 3 requirements is 
shown in the cell above. In the same manner, 
Awareness Level 4 is deemed to be reached partially. 

Awareness Level 5 In addition to being self-
aware, the system 
distinguishes between itself, 
the environment, and the 
peer group (which is treated 
differently because of its 
own set of expectations and 
goals) 

The AI SA KG system contains tasks dealing with 
environment properties, dealing with system properties, 
but also with properties formed by third parties (such as 
sector exit flight levels, dictated by agreements with 
neighbouring air navigation service providers). Those 
providers can thus be seen as a peer group with specific 
goals, whose existence is recognised by the KG. 

As with previous levels, Awareness Level 5 is conditional 
on the functioning of SHACL rules and (C.2), so it can be 
considered partially completed. 

 

According to the framework defined by Jantsch and Tammemäe (2014b), the AI SA KG system is 
conditionally an Awareness Level 5 system. This conclusion hinges on the current method of checking 
if the system inputs – the SHACL rules. If their functioning is bolstered by the implementation of 
another layer of checks, the estimation provided in this chapter could be confirmed. Future system 
architecture could also improve upon or replace sub-systems which only fulfil the awareness 
requirements partially, so the future system can be more accurately assigned a higher level of 
awareness. 
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4.4.5 Discussion on Results of Accomplishment of Artificial Situational 
Awareness 

The artificial situational awareness resulting from the monitoring tasks applied to the traffic data was 

compared to the ATCO situational awareness on the basis of accuracy. For the purpose of comparison, 

a group of four objective indicators was assessed. The results show that the KG system is able to make 

error-free assumptions about the traffic situation, regardless of the type of task at hand. Furthermore, 

machine situational awareness is formed instantly upon receiving input data, whereas the human 

participants have a time buffer of 30 seconds in which they are expected to notice any changes on the 

radar screen that requires their attention. 

The conflict detection machine learning module presents minimum distances for all aircraft pairs for 

which the minimum distances are predicted to be below 25 NM. The situations of interest are 

considered to be those predictions where the minimum distance is below 12 NM. A comparison of 

accuracy for conflict detection ML module outputs has been made in two stages: initial prediction 

before any ATCO inputs and the final prediction after all ATCO inputs were both compared to actual 

measured minimum distances. The results were classified regarding their accuracy, with the 12NM 

being the limit. There are 16% true-positive, 54% true-negative, 11% of false-negative (Type I error) 

and 13% of false-positive (Type II error) predictions. 

To analyse if the conflict detection module predictions change for the aircraft pairs whose minimum 

distance would violate separation minima, the comparison between CD module predictions and 

human actions was performed. Those aircraft pairs were observed and categorised based on the 

module performance. There is a significant number of aircraft pairs that are recognised late. These 

inconsistent predictions also do not follow ATCO conflict resolution actions. Inaccurate predictions are 

those unrecognised or recognised with false minimum distances. In each exercise in the same scenario 

(different ATCOs working on the same scenario), this occurred for the same aircraft pair. Therefore, 

conflict detection module inaccurately predicts aircraft pairs regardless of the ATCO changes on those 

flights.  

The framework chosen in the AISA Concept of Operations presents 7 conditions for (self-)awareness 

of a system. Combined with specific system functions or sub-systems, they form the requirements for 

6 awareness levels. AI SA has been shown to fulfil all 7 basic conditions and additional requirements, 

which means the AI SA KG system is an Awareness Level 5 or a Group-aware AI system. Most of the 

results are not PoC-system-specific, so they will be applicable to the future AI SA system as well. 

4.5 Results on AI SA System Performance 

A short analysis of the AI SA KG system performance was done to determine real-time application 
feasibility. As was already posited, many improvements are possible and needed for the proof-of-
concept – this analysis only establishes the current status so the influence of improvements can be 
better measured. The chosen analysis parameter, AI SA KG system runtimes, were measured using the 
full set of completed tasks.  
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Since the chosen exercises from experiment 1 were converted into a different number of RDF graphs 
(ranging from 14 to 58), the full runtime of exercises could not be directly compared, which is why a 
mean runtime was calculated for each exercise. Runtime per graph in relation to number of graphs in 
the exercise is demonstrated in Figure 26. 

 

Figure 26: Runtime per graph vs Number of graphs in scenario 

Since exercises were chosen from one of four scenarios of differing complexity, the analysis was also 
done to see how the maximum number of aircraft in the exercise might have affected the number of 
queries and thus the runtime. Since most exercises stemming from the same initial scenario share the 
same maximum number of aircraft, “median runtime per graph vs number of aircraft” (shown in Figure 
27) and “median runtime per graph vs scenario set” (shown in Figure 28) are remarkably similar.  

 

Figure 27: Median of runtime per graph for number of aircraft 
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Figure 28: Median of runtime per graph for scenarios 

Discussion: The PoC system is not able, but also not meant to operate in real-time. Analysis provided 
in this sub-chapter shows how quickly the system can process a single graph, depending on various 
parameters–these times range from under 4 s to over 10 s. These results can be interpreted in several 
ways, depending on which actual ATC systems are used for comparison:  

• Aircraft ADS-B data is sent every 1 s – while it’s not guaranteed to be received every second, 
it would be ideal if the future system could process the data as quickly as it is sent. For this 
(idealised) purpose, the PoC system is too slow.  

• ATCO station refresh rate is every 5 s – the location and label data are updated together. Since 
this is the rate at which the ATCOs receive information, and since team members use the same 
data to achieve situational awareness, this is also the realistic rate with which to compare the 
AI SA system processing times. Depending on the number of aircraft (or, more accurately, the 
amount of data stored in each RDF graph, which is mostly dependent on the number of 
aircraft), the system processing times are in the appropriate range for real-time application. 

The processing times described here are dependent on multiple factors, the influence of which must 
be further analysed if the system is developed for real-time use. One such factor is the architecture of 
the computer on which the system is running – ATM service providers have access to far more 
processing power than a single laptop. Other factors might be traffic, sector configuration, historic 
data storage strategies and others. 

4.6 Robustness and Generalisability of the AI SA System 

Presented below are two separate analysis approaches to measure the robustness and generalisability 
of the AI SA system. 

4.6.1 Independence of the Conflict Detection ML Module Predictions 
Regarding Situations of Interest 

In Section 3.7.2, it is described how aircraft pairs that were considered as a situation of interest were 
analysed based on the initial and final conflict detection ML module prediction. The results of the 
analysis are presented in Section 4.2.4. To measure if the conflict detection ML module prediction 
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accuracy is independent, the limit by which the predicted conflict is considered as a situation of interest 
is changed. If reducing the limit from 10 NM to 7.5 NM, the number of False-positive and True-positive 
results is reduced in the favour of True-negative results. If the limit is increased to 12.5 NM, the number 
of True-negative results is reduced in the favour of True-positive and False-positive results. Table 23 
and Table 24 present how many results of each error group occurred.  

Table 23: Type I Error and Type II Error results (7.5NM) 

 

Table 24: Type I Error and Type II Error results (12.5NM) 

 

The distribution of the results is shown in Figure 29 and Figure 30 . The overall number of the “True 
results” (True-positive + True-negative) reduces for the 12.5 NM limit and increases for the 7.5 NM 
limit with the respect to 10 NM situation of interest limit. False-negative results diverge the least when 
changing the limit for the situation of interest. Therefore, changing the limit for the situation of interest 
does not affect the Type I Error results. 

 

Figure 29: Distribution of the initial and final prediction analysis results (7.5NM) 

 Actual 

Predicted 

 Positive Negative 

Positive 65 45 (Type I error) 

Negative 91 (Type II error) 561 

 Actual 

Predicted 

 Positive Negative 

Positive 201 168 (Type I error) 

Negative 102 (Type II error) 291 
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Figure 30: Distribution of the initial and final prediction analysis results (12.5NM) 

Table 25 summarizes the results for the 3 analysed cases, with the difference being the chosen limit 
for the situation of interest. 

Table 25: Summary of Type I error and Type II error results 

Situation of 
interest limit 

TRUE 
POSITIVE [%] 

TRUE 
NEGATIVE [%] 

FALSE 
POSITIVE [%] 

FALSE 

NEGATIVE [%] 

7.5 NM 8 69 5 11 

10 NM 16 53 13 11 

12.5 NM 25 36 21 12 

 

4.6.2 Independence of the Knowledge Graph and Task Analysis Accuracy 
from the Scenario 

One of the goals for the AI SA system is for it to be equally effective regardless of the traffic situation 
at hand. In Section 4.4.1, the overall comparison of the machine and human situation awareness was 
described. The graphs will focus on the consistency of the machine situation awareness throughout 
different scenarios, but limited to monitoring tasks only, with no conflict prediction.  

The independence of the KG and task analysis accuracy from the scenario can be seen from the fact 
that there are no cases of degraded KG system situational awareness in any of the scenarios, regardless 
the fact that each contains a different traffic situation.  

Figure 31 presents the objective measure of KG system and human situational awareness for all 
analysed E1S1 scenarios. Likewise, Figure 32 presents the results for the E1S2 scenario, Figure 33 the 
E1S3 scenario and Figure 34 the E1S4 scenario.  
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Both left- and right-hand graphs count all the situations in those scenarios where there were changes 
in the traffic data concerning either heading, flight level, rate, speed, or the state of the aircraft 
regarding it being assumed or transferred to the next frequency, which is the same approach that was 
already described in Section 4.4.1. The left-hand side in the following figures shows how many times 
those changes happened in the scenarios and have been correctly recognised by both the ATCO and 
the KG system. The right-hand side shows how many times the ATCO or the KG system did not 
recognise those changes or did not act on them, leading to a degradation in situational awareness.  

What can be seen from the following graphs is that there are different areas of focus in each of the 
scenarios. For example, in the E1S1 and E1S2 scenario, the highest count of situation awareness 
degradations falls under the “Level change” category since those scenarios include a pseudo-pilot non-
compliance regarding the level instructions. Likewise, the E1S3 scenario accounts for all cases of 
situation awareness degradation in the category of speed change because only that scenario contains 
a speed non-compliance. Considering the description of all the scenarios in Section (experiment 1), 
these results are expected.  

The independence of the KG and task analysis accuracy from the scenario can be seen from the fact 
that there are no cases of degraded KG system situational awareness in any of the scenarios, regardless 
the fact that each contains a different traffic situation. 

 

 

Figure 31: Objective count of occurrences of preserved and degraded situation awareness (E1S1) 

 

Figure 32: Objective count of occurrences of preserved and degraded situation awareness (E1S2) 
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Figure 33: Objective count of occurrences of preserved and degraded situation awareness (E1S3) 

 

Figure 34: Objective count of occurrences of preserved and degraded situation awareness (E1S4) 
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5 Discussion 

The main goal of the evaluation in D5.2 is to determine if the concept of human-machine team 
situation awareness is feasible and what level of accuracy artificial situation awareness can reach today 
at the project-level of implementation. Because of the early stage of the concept-of-implementation 
during the human-in-the-loop experiments in January 2022, those tests are of exploratory nature. The 
AI SA system at the current project-level state of implementation in April 2022 includes a more 
comprehensive list of monitoring tasks that AI SA system is able to perform (8 tasks in January 2021 
compared to 46 out of 57 tasks in April 2022). Quantification of accuracy and analyses of the 
functionality of the AI SA system are performed with the comprehensive implementation of 
monitoring tasks.  

According to the ConOps (D2.1) the project level of implementation of the AI SA system does not 
require it to work in real-time. A stepwise approach was chosen. A first human -in-the-loop simulation 
was done to collect data from 20 ATCOs. Data from simulator sessions were imported into the AI SA 
system and processed with specific SPARKL queries designed to analyse the correctness of the output 
of the AI SA system to them and to compare them later with ATCOs answers to the same queries. 
Experiment 2 included 16 ATCOs who followed in four of five scenarios another ATCO’s performance 
(from experiment 1) in a “watch only” simulation, with the addition of AI SA inputs. One scenario was 
interactive and allowed participants to be in charge for traffic handling. During the experiment 
participants were asked the same queries as were processed by AI SA system before. After they 
answered to those queries, they immediately received the AI SA inputs to the respective query. To 
guarantee anonymity, voices of ATCO and pseudo-pilot were transformed and reproduced by synthetic 
voices. “Watch-only” simulations with synthetic voices credibly represented pilot-controller 
communication. Since the AI SA inputs were also transmitted via audio, individual voice transmissions 
either had to be accelerated or were not identical to the original simulation transmission. To 
distinguish between original communication and AI SA inputs, a short chime was used to allow ATCOs 
to focus more on those audio recordings. A different chime was used to alert ATCOs that the exercise 
would be frozen and unfrozen, at which time they completed query answers. To reduce the confusion, 
an example of each type of the chimes, along with examples of the pilot and ATCO voices was played 
to the participants before the training exercise started. Originally in experiment 1, ATCOs used Datalink 
for some instructions or clearances. Those clearances also popped out on the screen increasing the 
workload for the ATCOs in experiment 2. 

The main findings for the research questions are summarised in this section and can be overviewed in 
Table 26.  

Table 26 Overview: Research questions and summary of results 

Research question Result Section 

Q1.1. What characterises ATCOs’ 
scanning patterns and priorities? 

ATCOs with preserved situation 
awareness scanned regularly, did 
not fix their gaze on aircraft or 
conflicts and applied prioritisation 
for important and unimportant 
aircraft. 

4.1.3.2 Comparison of ATCO 
Groups for Gaze-Based Analysis of  
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Q1.2. Are different measures for 
situation awareness3 significantly 
interrelated according to their 
meaning? 

Moderate to high consistencies 
across methods, lowest for 
subjective rating of situation 
awareness.  

4.1.2 Correlational Results on 
Situation Awareness 
Measurement Methods 

Q2.1. Are artificial and ATCO 
situation awareness comparable? 

Some agreement on conflict 
detection between ATCOs and AI 
SA system. Conflicts missed by 
either ATCO or AI SA system. AI SA 
system unable to estimate right 
time for AI SA inputs and 
prioritisation.  

4.2 Results on Comparison of 
Human and Machine Situation 
Awareness 

Q2.2. Can the AI SA system 
provide inputs to situation 
awareness that ATCOs were not 
aware of? 

Yes. Inputs particularly important 
for inconspicuous conflicts and 
non-conformances. 

4.2 Results on Comparison of 
Human and Machine Situation 
Awareness 

Q3.1. Is human performance 
enhanced by adding machine 
situation awareness? 

Performance enhanced, despite 
inadequate input modality 
creating distraction: some 
conflicts detected earlier and 
solved faster, others not. 

4.3.1 Evaluation of ATCO’s 
Performance Based on 
Behavioural Coding 

Q3.2. Do ATCOs evaluate AI SA 
inputs as useful and trustworthy 
contribution to human-machine 
team situation awareness? 

Some AI SA inputs judged helpful, 
but most inputs considered 
irrelevant. Inputs partially trusted. 
AI SA system not yet contributing 
sufficiently to human-machine 
team situation awareness. ATCOs 
willing to trust if system is 
reliable. 

4.3.2 Evaluation of Artificial 
Situation Awareness Based on 
Questionnaire Answers 

Q3.3. Do ATCOs use AI SA inputs 
for their situation awareness and 
decision making? 

ATCOs did not validate the AI SA 
inputs as supportive for their own 
situational awareness (12.8% 
rated inputs as supportive) or 
decision making (8.8% rated 
inputs as supportive). 

4.3.2 Evaluation of Artificial 
Situation Awareness Based on 
Questionnaire Answers 

Q4.1. Can the monitoring tasks be 
applied to the KG to achieve 
situational awareness? 

Monitoring tasks have been 
successfully automated and 
applied to KG data. Task outputs 
demonstrate that the system does 
achieve situational awareness. 

4.4.1 Results of Knowledge Graph 
and Task Analysis 

Q4.2. Does the CD machine 
learning module provide accurate 
results regarding situations of 
interest? 

CD machine learning module 
provides 70% accurate predictions 
compared to the 10 NM miles SI 
limit. 

4.4.2 Results on Conflict Detection 
ML Module Predictions Analysis 
Regarding Situations of Interest 

 

3  situation awareness self-ratings, situation awareness queries, situation awareness based on eye-tracking, 
implicit measurements of situation awareness 
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Q.4.3. Does the CD machine 
learning module provide accurate 
results regarding conflicts? 

CD machine learning module 
provides partly accurate results 
regarding conflicts; there is 
significant number of inaccurate 
and inconsistent predictions. 

4.4.3 Results on Conflict Detection 
ML Module Predictions Analysis 
Regarding Conflicts 

 

Q.4.4. Does the AI SA system 
check the status of its sub-
systems? 

CD ML module tasks successfully 
perform checks on CD module 
inputs and outputs, thus allowing 
the AI SA system to have self-
awareness regarding its sub-
systems. 

4.5 Results on AI SA System 
Performance 

 

The following sections summarise the methodological limitations of the experiments for evaluation of 
human-machine team situation awareness, the conclusions, implications and provide an outlook.  

5.1 Methodological Aspects and Limitations 

In the following sub-chapters, limitations are discussed for their potential impact on the results and 
for consequences regarding the execution of work package 5 with special focus on task 5.1 Comparison 
of SA between AI and ATCO and task 5.3 Human performance in distributed situation awareness. 

5.1.1 Experimental Design 

Despite the planned activities of the Grant Agreement to assess the human performance while the 
participants look at static traffic situations, the ZHAW decided in agreement with the project leader 
FTTS that human-in-the-loop simulations will be conducted. This major change brought not only 
benefits with it. Similarity to the working environment was significantly increased using of an 
interactive simulation tool, since ATCOs are used to work at a working station with dynamically 
changing traffic situations on monitors and radio communication as an important source of 
information and communication. 

The concept of operation specifies the requirements for system operation of AI SA system. However, 
the concept was at an exploratory stage during work package 5 evaluation experiments. Therefore, 
the proof-of-concept system developed corresponds to a low level of technology readiness (TRL 1 or 
2) and the evaluation of human-machine team situation awareness is thus very preliminary. No HMI 
was developed to provide AI SA input. Instead, ATCOs received inputs on the auditory channel. This 
limits the conclusions on the results, as the choice of modality might have created additional load, 
because the auditory channel is used extensively in todays’ ATC tasks. This could have made it difficult 
for ATCOs to include the artificial situation awareness in their situation awareness. If the AI SA inputs 
were communicated visually, the simulation handling would have become more user-friendly. ATCOs 
would have the possibility to check the inputs selectively and more often adjusted to their needs and 
with minimal cognitive load. In addition, it would not be distracting from current tasks – and hence 
disturbing–if the inputs were shown early, offering long-term anticipation to ATCOs. This issue would 
be less relevant if there was planner controller during experiment 1 and experiment 2. One of his 
working position tasks is to identify inbound traffic conflicts. AI SA input with large anticipation spans 
could optimise planning tasks. The ATCOs could then decide for themselves when they want to use 
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those inputs. Therefore, the development of an appropriate human machine interface is essential to 
the effectiveness of the AI SA system. 

The project team is aware that AI SA system is intended for a future working environment where 
communication with flight crew is done by means of Controller Pilot Data Link Communications 
(CPDLC). Although datalink could be used for issuing clearances, 94% of all ATCO-pilot interactions 
occurred via radio transmission in the experiments. 

The experimental settings in both experiments might have imposed additional limitations. On the one 
hand, the parallel running of two simulation stations in the same room can be distracting. Up to eight 
people were in the experimental room and were sometimes chatting amongst themselves. However, 
this is not unusual for ACC work environment. ATCOs are not always completely silent, especially 
during shift changes or chats between ATCOs. Taking this into account, data logging in such a context 
can still be seen suitable. 

The manner how queries were asked during simulation and the lack of clear definitions for “conflict” 
and “non-conformance" in the queries made it difficult to ATCOs to answer. It turned out that the 
query wording “what do you need to pay attention to?” was inappropriate since any answers could fit. 
ATCOs have a different understanding of how a crossing is defined. The term non-conformance was 
new to some of the ATCOs. These findings would need to be addressed in a further similar study.  

Lastly, there is to mention that sometimes the radio transmissions were not fully understandable due 
to technical hardware issues (i.e., head- and micro-phones). This small issue in this context of 
exploratory research can influence the results to a certain extent but is not as dangerous as in the real 
working environment. Nevertheless, it should not be neglected that some information might have 
been lost when studying the results. 

5.1.2 Simulation Software 

The simulation software used in the experiments, ESCAPE Light, is a platform the participants never 
used before. It has significant differences compared to Skyvisu, a software developed and 
implemented by Skyguide. The switch to a new environment was one of the biggest limitations for the 
participants. The majority of the ATCOs expressed that they had difficulties with the differences of the 
system during the simulation or in the debriefing questionnaire. This should be kept in mind in view of 
validity of the results on ATCO situation awareness presented in this deliverable.  

5.1.3 Artificial Situation Awareness 

Generating AI SA inputs is limited by the need for post-processing of AI SA KG system outputs. This 
means that it was not possible to generate the inputs for human-machine situation awareness in real 
time. The “watch-only” scenarios in experiment 2, which led to a trade-off, result of this limitation. 
They allowed for comparison of human and artificial situation awareness, but at the cost of lower 
validity for ATCO situation awareness. Because participants were not acting themselves upon their 
own situation awareness but had to reproduce the actions of another ATCO. Since AISA is in an 
exploratory stage which is also clearly indicated by its technology readiness level (i.e., TRL 1 or 2) and 
not meant to be a finalised product, the post-processing is not contradictory to the project goals.  

It was challenging to assess artificial situation awareness in experiment 2 because the AI SA system’s 
technology was not mature in terms of project-level of implementation. Another reason why it is 
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difficult to critically assess the AI SA system is that it was already further developed until now (April 
2022) than it was at the time of execution of experiment 2 (January 2022). Nevertheless, a summary 
of the analysis is made regarding the status of AI SA system at the time of the experiment. First, it is 
important to distinguish what the AI SA system is used for because this influences the analysis. 
Analyses discussed later assumes that the AI SA system is a stand-alone product and can act in parallel 
with the ATCO and is not intended to only support the ATCO. Therefore, it is essential to suppose that 
all observations made by the machine such as detecting conflicts (crossings, level, and speed bust), 
identifying aircraft on the wrong flight level, and giving aircraft a direct call, could be performed in 
reality. 

To present the limitations of the system generating artificial situational awareness, there are two 
aspects, explained below, to be considered. 

5.1.3.1 Conflict Detection ML Module 

Conflict detection ML module provides the KG system with the results on the aircraft pairs which are 

considered as a situation of interest. Herein, the ML module provides information about pairs whose 

minimum distance would be less than 20 NM. This value is more than what an ATCO would consider a 

conflict. To prevent an overload of false predictions, conflict detection module output provides the 

user with additional information. Firstly, it calculates if the aircraft pair is a situation of interest and 

then calculates the probability of it. This information would give ATCO an insight into how urgent the 

addressed conflict is. The results obtained in the analysis could not rely on these calculations because 

there is not a straightforward connection by which ML module output could be filtered out. 

Outputs that could be delivered from the conflict detection module are the distance and time to the 

predicted minimum distance. These outputs are not constant and proportional to time, i.e., the 

timestep between two predictions does not correspond to a reduction in time to the minimum 

distance. The reason for this is the way the conflict detection module determines where the conflict is 

in space and time. Using the training data rather than aircraft speed results in an output that is not 

usable for continuous tracking over time. Therefore, all the analyses on the conflict detection ML 

module were performed on one prediction, not continuously over time. To have a real-time operation, 

the ML module should be integrated into KG system and predictions in time should be averaged so 

there is a continuous flow of the time and distance to minimum distance predictions. 

CD ML module training data explained in Section 1.2.1.3 is limiting the conflict detection module 

performance as it only accounts for aircraft types present in training data. Even though based on 

correlation, training statistics and CD ML module prediction are not statistically related, predicting 

values without having training statistics for an aircraft type would impair ML module performance. 

The “black-box” effect takes away the opportunity to analyse why the conflict detection module 

delivers inaccurate predictions, why it predicts negative values or, most importantly, why some 

conflicts are not recognised at all. This reduces the level of confidence for the CD ML module.  

Furthermore, the conflict detection module filtered the aircraft pairs to check only traffic that is not 

expected to be vertically separated. It cannot predict a conflict that would occur if one aircraft changes 

its flight level before its altitude enters another aircraft's flight level band. Thus, the conflict detection 

module recognises all traffic to be a situation of interest if one aircraft changes flight level in the vicinity 

of another one for the whole time until they are vertically separated. It does not consider cleared flight 
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level as a reference when checking if traffic is a situation of interest. If it could consider cleared flight 

level and distance to minimum distance, more relevant aircraft pairs would be predicted. 

As well as predicting if two aircraft would be in a conflict if they change their flight level, predicting if 

two aircraft would be in conflict if cleared routes are issued is also a limitation of the conflict detection 

module.  

5.1.3.2 Monitoring Tasks 

The monitoring tasks listed in Table 2 in Section 1.2.1.4 provide an accurate and complete view of the 

current traffic situation, as seen from results presented in Section 4.1.1. However, some limitations 

have been identified and need to be considered. 

At this stage of development, the KG system is not able to work in real-time. The flight data and the 

static data about the airspace needs to be stored in RDF graphs before the tasks can be applied to the 

data to get the outputs. Processes which automatically transform data to RDF form are not yet 

integrated with the rest of the system (which contains the tasks), so human action is still required. 

The way the system currently operates will also prove to be a limitation in the future, considering the 

storage space available. The KG system saves all input data and all task outputs to the KG. At this point, 

the negative effect the number of graphs stored in the KG has on the computation speed has already 

been noted. This is something that should be considered and improved while developing a system 

working in real-time.  

5.1.3.3 Awareness Level Classification 

As already stated at multiple points in this document, determining the situation awareness of an AI 

system is a complex matter. Even if not viewed in the context of ATC and ATCO-machine collaboration, 

the classification of an AI system requires the application of a general framework to a specific system 

configuration. In the case of the AI SA KG system, which by design does not run in real time and is not 

completely integrated, this means that additional steps are required to explain why a system fulfils 

requirements of various awareness levels. Thus, the nature of the AI SA KG system presents a limitation 

during awareness level classification. 

An example of incompatibility between the AI SA KG system and the framework chosen for awareness 

level classification is the requirement that a system measure the values of environment parameters, 

which can then be assigned to environment properties. While it is obvious that AI SA contains and uses 

values originating in its environment, the literal interpretation of that condition requires the existence 

of system-integrated sensors which would record those values. Their non-existence is of course valid 

for a PoC system, but the task remains to explain how the system accomplishes the task set forth by 

that condition. The same issue is apparent in other conditions and requirements set forth by the 

chosen framework. A different choice in framework or the creation of a new framework might be 

necessary if, during further development of AI SA or a similar ATC system, it becomes apparent that 

this framework continues to be incompatible with the type of system (and system architecture) being 

researched. 
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5.1.4 Limitations Related to Participants 

It was obvious that for some participants it was a somehow frustrating experience to have to work 
with a new tool that is less useful than the system they are familiar with (compare Figure 5). They were 
impaired in their situation awareness and performance and felt annoyed. This compromised the 
validity of situation awareness measurement because ATCOs’ scanning and recognition of situations 
from experience was obstructed. It required more effort to develop situation awareness. Not only 
situation awareness was more difficult with the unfamiliar tool, but also the handling of the traffic 
required more effort and absorbed cognitive resources. Performing less than they could was a 
frustrating experienced. Frustration can evoke thoughts of anger, that absorb mental capacity needed 
for tasks – a vicious circle. 

Judgement of the stress level of the subjects after the experiment was heightened. During the 
experiment they were regularly prompted with queries about situation awareness for which they 
needed to scan the radar and use an unfamiliar set of tools. ATCOs with difficulties to adapt to the new 
simulation tool probably felt annoyed. Additionally, the scenarios were rather short in length (between 
5 and 23 minutes). ATCOs had to quickly reorient themselves in a series of five different scenarios. 
There also, adaptability mattered. On the other hand, the majority of ATCOs did not show elevated 
activation in the psychophysiological measurements. During simulation their activation was on average 
lower than before and after (compare Figure 16 and Figure 17). This indicates that accomplishing the 
tasks and concentrating actually lowered ATCOs activation a bit, which could be due to task familiarity 
and he fact that ATCOs are rigorously selected for their job.  

Lower activation could also result from feeling less responsible when performing in a simulation as 
compared to real work because a mishap would have no consequences for safety nor traffic flow and 
capacity. ATCOs seemed to operate with a more relaxed attitude than during their work. It would 
therefore be interesting to compare with arousal measured during work in the ACC. On the other hand, 
their motivation might have outweighed relaxedness in simulation, when participating in an 
experimental study. 

The operational and technical standards at Skyguide belong to the frontrunners in European. According 
to subject matter experts, Skyguide’s system works very reliably. This may have lowered ATCOs 
attention towards non-conformances (complacency). ATCOs may have been biased because they 
expect other products to be equivalent. In fact, some ATCOs were very critical towards the experiment. 
The design of the experiment partly reinforced this.  

Implementation of innovative tools in an existing environment encounters resistance because highly 
skilled participants lack habits to operate the system. This may evoke aversion against the new tools. 
Subjective perception of the usefulness AI SA system may have been biased by the fact that ATCOs 
were not familiar with the simulation tool and needed more effort to fulfil their job. This was not 
favourable for the evaluation of the AI SA proof-of-concept system conducted in work package 5. 
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5.1.5 Behavioural Coding 

The approach of creating data frames based on behavioural coding was chosen because it leaves little 
room for subjective interpretation as compared to judging the level of skilfulness. Only aspects 
connected to ATCOs’ actions were considered. This allowed to analyse precisely what ATCOs were 
doing. 

The coding of ATCO actions was done by three persons. They underwent standardisation training with 
a subject matter expert to minimise differences in coding style. Small differences in the start and end 
times of the events may have occurred. Setting of start time for events and actions may be imprecise 
and therefore not in perfect synchrony with the event in simulation for reasons of delayed reaction 
time. 

It was sometimes difficult to define how long a conflict lasted. The end time of a conflict was set as 
the time when the ATCOs measured conflicting aircraft with VERA or when they directly reacted to it. 
In most cases, it was clear, because many ATCOs used the VERA tool as soon as they detected a conflict. 
However, it could be additionally checked when the corresponding aircraft were scanned. 

5.1.6 Biometrical Analysis  

It was decided to be refrained from good practice for biometrical measurement to perform a 
standardised stress calibration test. This had several reasons: Time constraints and - under 
circumstances of performing two experiments simultaneously in the same room - unnecessary 
distraction of participants. Calibration tasks can create an atmosphere of being tested.  

There was therefore no standardised baseline in terms of resting heart rate nor a reference for being 
mentally charged to individually interpret the data. To compare activation levels during simulation or 
– more specifically - in the context of events with an individual baseline is necessary because the 
characteristics of psychophysiological reactions are idiosyncratic. Hence between-subject comparisons 
may not be made based on raw values. The choice of the off-task baseline as an alternative certainly 
needs to be reviewed, as most participants showed lower levels of activation during task 
accomplishment in simulation compared to baseline. The renouncement of the stress calibration 
resulted in a need to define an alternative baseline. The procedure to select data before and after 
scenarios and during breaks between scenarios to constitute an off-task baseline may have resulted in 
a mixture of arousing (e.g., nervosity prior to experiment) and also relaxing time periods (e.g., relief 
after simulation). A standardised approach with qual time span for a baseline for all ATCOs would be 
preferable.  

To time span used for event-based analysis of psychophysiological parameters might have been too 
long (up to 10 minutes) to discover elevations in activation. Shorter phases (e.g., 10 seconds) need to 
be considered in analysis. 

To minimise artefacts by means of median instead of procedures to exclude extreme values simplified 
the analysis but has possible side effects. The median value is the middle value in an ordered set of 
values arranged by size. Outliers in terms of artefacts (high signals due to motion or similar) and 
temporary zero-values are omitted and do not falsify analysis as it could happen if mean values were 
calculated (sum of all values sampled divided by the number of samples). The benefit of controlling 
artefacts may be diminished by a reduction of validity (not all relevant data included) as interesting 
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effects – the peaks of workload –also partly get omitted by this procedure. Removing artefacts could 
have generated more valid data on workload.  

Besides statistical issues in the analysis of biometrical parameters it is important to consider the 
intrusiveness of attaching biometrical sensors and measurement devices to the participant’s body. It 
can be physically disturbing (cables, patches, and pressure marks, etc.) and may trigger discomfort due 
to feeling observed and having no control over the measured reactions. 

5.1.7 Eye Tracking Analysis 

Different software was used to measure and analyse eye tracking data. However, these may have 
limitations that accumulate the imprecision or result in missing data. They are discussed in the 
following chapters. 

5.1.7.1 Measuring of Eye Movements During Experiment 

Gaze analysis with eye-tracking is challenging when distance between eye tracking glasses and radar 
screen is relatively large. Calibration is important for accuracy and may be disturbed if the glasses get 
moved, and processing of the data to map the gaze on areas of interest is often effortful. 

The Tobii Glasses 3 have an accuracy of 0.5°. Figure 35 shows the difference in accuracy depending on 
distance. The two ellipses represent the screens. If the distance from the screen to the eye tracker is 
about 0.7m, then it leads to an expected deviation of around 6 mm (see Equation 4). If the distance is 
increased to 1.2m deviation is expected to be around 10 mm (see Equation 5). 

Equation 4: Deviation of ET for a screen distance of 0.7m 

ℎ1 =  𝑑1 ⋅ tan(0.25°) ≈ 3𝑚𝑚 

Equation 5: Deviation of ET for a screen distance of 1.2m 

ℎ2 =  𝑑2 ⋅ tan(0.25°) ≈ 5𝑚𝑚 

The label size of an aircraft on the radar screen is relatively small. Relative to the distance between 
ATCO and screen the expected deviation is considerable and may not allow to exactly determine which 
area of the label an ATCO was looking at. In addition, it is difficult to distinguish between labels of 
several aircraft grouped nearby. The use of 43’’ screen made it necessary to place ATCOs at a distance 
about 70 cm so they could overview the radar screen at one glance and get all the information they 
needed. 
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Figure 35: Accuracy of Tobii Glasses 3 

Another problem that can occur is inaccurate calibration. Basically, calibration was performed before 
each scenario, and it was tested if the glances were detected at the expected spots. Inaccuracies can 
occur if ATCOs moved the glasses in between or change their position. This has been noticed 
sometimes, when gaze was focused on areas where no information was displayed for ATCOs. This 
technical problem can be solved by post-correction. 

5.1.7.2 Accuracy of the CVT  

To analyse exactly when the ATCOs looked at which aircraft and calculate the duration a computer 
vision tool (CVT) was developed. This tool can recognise the screen in the ET video and the 
corresponding aircraft using computer vision. However, the accuracy of the screen recognition is 
greatly hampered by the background of the video and by head movements. This in turn affects the 
accuracy for recognition of the aircraft being viewed. Because the tool did not work for all ATCO 
recordings - e.g., because the background contained too many disturbing objects - only nine ATCOs 
could be analysed with this tool. This resulted in a significant reduction of the sample size for analysis.  

The CVT estimates its accuracy with a confidence level. The confidence per scenario was on average 
0.5, i.e., the tool is about 50 % sure that it has correctly made the assignments. As a result, 50 % of the 
data is lost or partially incorrect. It was noted that in some cases the confidence was low, although the 
screen is well recognised. The underlying short disturbances of the system may have a strong negative 
impact on confidence. 

For the analysis, only ATCOs with an average confidence above 0.5 in the scenario were selected. The 
data was further cleaned by processing only data with a confidence higher than 0.5. By this the overall 
confidence increased to 0.7. This reduced uncertain results but also leads to missing data. It can 
happen that the CVT does not detect an aircraft even though it has been looked at. The tool is therefore 
too conservative and dismisses some data as uncertain that would actually be a true gaze on an aircraft 
label. Only choosing values with high confidence can ensure that detection of fixations on aircraft 
labels was actually true.  

Also, the tolerance of the tool must be considered. It is difficult to exactly determine where the ATCOs 
have looked, therefore a tolerance for recognition of fixations needs to be selected. In this experiment, 
the tolerance corresponds to the size of the blue circle in Figure 13. If aircraft were far away from each 
other, this did not cause problems because only one AC could be identified anyway. However, if there 
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many aircraft were group nearby and the labels overlapped, then it is difficult to clearly assign the 
gaze. The tool then recognises that several aircraft were looked at once. It can be argued that if aircraft 
were very close together, then the ATCO perceives certain information from several aircraft through 
the area of peripheral vision. However, the area cannot be precisely defined.  

5.2 Summary and Conclusion 

The Single European Sky ATM Research (SESAR) 3 Joint Undertaking founded a research project called 
AISA to investigate the usefulness of artificial intelligence in ATM. This project developed an AI-based 
machine situation awareness system and tested its capability to accurately perform monitoring tasks 
and contribute to human-machine team situation awareness. A first experiment (N=20) made a 
differentiated analysis of the situation awareness of ATCOs and their working method using multiple 
methods. A second experiment (N=16) compared the situation awareness of ATCOs and the AI SA 
system with query probes and investigated the impact of artificial situation awareness inputs on ATCOs 
performance and judgement. In this simulation the AI SA system pointed out conflicts in advance or 
alerted about non-compliant aircraft. Including the element of AI in team situational awareness can 
widen geographical coverage and increase the time span covered by the awareness of the ATCO-AI 
team. Today however, this widening does not fully meet the ATCOs’ needs as executive controller.  

Topical section one compared different methods to measure ATCO situation awareness. Results 
showed that specific task-related measures with queries can be a helpful complement to subjective 
rating methods, as it provided ATCOs detailed feedback and thereby supported their self-monitoring. 
A comparison of the situation awareness of ATCOs showed that ATCOs with preserved situation 
awareness scanned and reacted to events neither particularly early nor late. Most of their 
transmissions integrated multiple instructions (e.g., heading and flight level change). Conflicts were 
resolved without necessity for later corrections to the initial conflict resolution. To support their 
situation awareness, they regularly used tools to measure the distances between conflicts, but not 
excessively. They scanned the radar more regularly, and their gaze fixed for a shorter duration and 
more specifically on areas of conflicts or high relevance. They correctly prioritized aircraft and saved 
mental workload. The capability not to rush in face of high task load and traffic complexity allowed 
those ATCOs to gain overview and solve tasks in a structured and effective way. Despite the use of 
multiple methods, it is difficult to recognize what caused them to recognise conflicts, while ATCOs with 
degraded situation awareness did not - even though they were scanning all relevant areas, too. The 
availability of accurate mental models is important for recognition - Endsley’s situation awareness level 
2 (see Section 2.1.1.2). In dynamic and complex environments such as ATC it might be especially 
challenging to develop and update accurate mental models that support situation awareness - because 
of irregularity, frequent changes and interdependencies requiring extensive mental resources. We 
therefore conclude that AI SA system inputs on monitoring tasks might act as a “second opinion” and 
support the development of differentiated and more accurate mental models. As the results showed, 
AI SA inputs seemed to enhance the self-monitoring capability of ATCOs (see Section 4.1.1.1). 

Feedback on performance at work is sometimes complicated by the social context and in cases of 
hierarchically high-ranked individuals even prevented. This can be dangerous, for instance when 
people do not dare to speak up about safety relevant issues for social reasons or because they fear 
personal consequences. In a study by EHS today employees only speak up in 2 out of every 5 unsafe 
situations (Tucker & Turner, 2013). Transfer of critical information by machines is not reduced for social 
reasons. We therefore suggest that the future AI SA system facilitates a safety culture that promotes 
organisational learning and an open attitude towards errors, as the tool provides input on monitoring 
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tasks irresectable of the social context. Although automation might never become a “real teammate” 
to human operators, it will reliably contribute to safety and learning.  

Topical section two made a comparison of human and AI situation awareness based on outputs from 
AI SA system stage I implementation and ATCO answers to identical queries about specific monitoring 
tasks. Concerning hits (correct positive) and correct rejections (correct negative) we found that some 
AI SA outputs did fully agree with ATCO answers, for other aspects it sometimes captured aspects that 
ATCOs had missed, but it also produced errors (false alarm and misses). The accuracy of the AI SA 
system performance was initially low and could be improved at stage II implementation including 46 
of 57 monitoring tasks compared to 8 tasks at stage I implementation. In future, accuracy will be 
further increased, but the timing of artificial situation awareness inputs also plays and essential role, 
and - with it - the design of the HMI, too. If ATCOs with degraded situation awareness should be able 
to profit from AI SA inputs, a sophisticated design would be necessary that guides attention to specific 
relevant aspects -remember, those ATCOs scanned the relevant area but did not recognize.  

Topical section three on human-machine team situation awareness explored the ATCO’s judgement 
about the usefulness of AI SA inputs. After initial enthusiasm about simulating a “fake” real-time 
interaction of ATCO and AI SA system we soon stumbled on requirements we could not meet with our 
rather rudimentary HMI design. The HMI design was not part of the project and therefore consisted 
only of oral inputs provided to ATCOs in a simulated work environment that was already rich of 
auditory information. This has led to distractions, annoyance, and additional mental load. Despite this, 
ATCOs receiving AI SA inputs - on average - discovered some conflicts earlier and noticed non-
compliance by pilots more often upon warnings from AI SA system than ATCOs without AI SA inputs. 
From this we conclude that human-machine team situation awareness can in fact improve safety and 
performance in ATC provided - provided it is designed properly, and machine situation awareness 
inputs are reliably accurate.  

Our opposite approach to deliberately disregard principles of good HMI design taught us some lessons 
about what happens if artificial situation awareness inputs usurp ATCOs’ attention at the wrong 
moment and load their minds when they are overly busy to take notice about information that 
becomes relevant for them only later. For instance, some of the artificial situation awareness inputs 
on conflicts were provided too early and others too late. From these results we conclude that 
inappropriate HMI design is counterproductive: It may distract ATCOs’ attention, load their memory 
with information that has little or no use for later recall and - in practice - may even be dangerous (see 
D5.2). We suggest that the synchronization of machine situation awareness with ATCOs’ minds and 
needs - as a result from their rhythm and style of work - is a major requirement for HMI design for 
human-machine team situation awareness.  

To optimally deploy ATCOs’ attention for important information it is necessary to further develop the 
AI SA system to include mechanisms for prioritisation of information inputs according to ATCOs’ needs. 
This means we need to expand and include AI SA system’s awareness level about ATCOs for adaptive 
human-machine interaction. There are “windows of opportunity”, when ATCOs attention is available 
for information relevant to the current tasks – be it solving an impending conflict, optimising services 
or planning. Without the ability to filter information more specifically, it is necessary to design artificial 
situation awareness inputs in a way, that does not impose an immediate need for attentional 
resources, offers information in sensory modalities, that are least occupied by the tasks at hand, but 
alerts about urgent aspects. HMI solutions might for instance use different modes of information 
presentation for short- and long-term aspects. Today ATCOs mainly interact with pilots via radio 
transmission, putting high load on auditory attention. This might also be necessary in cases, where 
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ATCOs’ attention is overloaded and risk for situation awareness errors is high. In near future, with more 
aircraft equipped for Controller Pilot Data Link Communications (CPDLC) providing oral artificial 
situation awareness inputs might be more beneficial than today. With increasing complexity and 
higher density of traffic it might be desirable for a future AI SA system to offer simulated forecasts of 
consequences for options in a visualized form and upon ATCOs’ request. That way ATCOs could 
evaluate the favourability of options whenever they had time or were curious to see and learn.  

Overall, ATCOs were not convinced by the performance of AI SA system at stage I implementation 
during experiment 2, but they were willing to trust an AI-based machine situation awareness in future. 
We conclude and recommend that the next step of automation could - and therefore should - enable 
ATCOs to develop and enhance situation awareness and in the long-term their expertise. It should not 
degrade them to supervisory controllers of ever more clever machines. An AI-based system combined 
with a reasoning engine might in future be able to learn and understand how ATCOs approach traffic 
situations and what information they need to be aware of to do so effectively and safely. That would 
then allow for a true human-machine collaboration based on human-machine team situation 
awareness. Importantly, this approach could prevent possible adverse effects of automation that also 
apply for an AI-based SA system: i.e., deskilling by lack of regular practice on the job, complacency due 
to a felt superfluousness of human control of highly reliable technical systems, fatigue and lowered 
readiness to perform due to inactivity, and confusion due to low involvement (“human-almost-out-of-
the-loop”) and high complexity of technology.  

Topical section four dealt with the accuracy of the estimations and predictions of the AI SA system as 
well as the level of awareness achieved it. Monitoring KG tasks have proved a high level of accuracy. 
Analyses have shown that AI SA system noticed every deviation, violation, or non-compliance promptly 
and without any vagueness. Correctness of the system is not affected by workload, traffic count, or 
scenario design. The system allows ATCOs to become aware of their omissions in perception - Endsley’s 
situation awareness level one – and select more accurate work strategies, and thereby differentiating 
ATCOs routine repertoires.  

We close our reflections with a resumé: Increases in air traffic will require additional tools to keep the 
ATCOs’ situation awareness and workload at a manageable level. The AI SA system proof-of-concept 
has demonstrated to be a promising way towards that goal. Machine situation awareness is more 
meticulous than a human operator with limited attentional resources can ever be, and it never turns 
off nor switches to other things. As expected, machine situation awareness outperformed ATCOs in 
some aspects of medium-term anticipation and detection of non-conformances in the second 
experiment. Nevertheless, designing artificial situation awareness inputs to contribute to human-
machine team situation awareness is challenging by itself. Accuracy of machine situation awareness 
inputs is not enough; human prioritisation of information needs to be considered according to its logic 
for task fulfillment and scarce mental resources to accomplish this. Human beings are forced to 
compensate the lack of processing capacity by means of a repertoire of fine-tuned procedures for goal 
attainment that is stored in long-term memory and activated when information triggers a suitable 
procedure. What information is focused on is essential for selecting an adequate procedure to 
appropriately addresses task requirements and the context. AI SA system can help ensure ATCOs 
become aware of the relevant information to select appropriate procedures, thereby broadening, and 
refining their repertoire of procedures to become adaptive experts.  

As Jenny Burkhalter – experienced ATCO and writer of the preface - would probably say: “That is, what 
ATC is about.” 
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5.3 Outlook 

More effort is needed for adaptable, human-centred design of automation. In future, the AI SA system 
should be able to recognise when information is relevant for ATCOs and support their awareness about 
relevant information for adequate decision making. The HMI needs to provide visual inputs on artificial 
situation awareness, thereby allowing ATCOs to choose when to process them. That way, inputs 
regarding monitoring tasks will not require controllers to immediately shift their focus of attention, 
and information remains available whenever needed. The audio inputs could be used to alert about 
critical situations such as a loss of safe separation.  

An HMI design supporting ATCOs awareness for relevant information ensures ATCOs stay “in the loop” 
and can make appropriate decisions. This minimizes the dependence on the AI SA system in case of 
loss of functionalities or the whole system. How the ATCO can take over all monitoring tasks if AI SA 
fails will be solved by graceful degradation of the AI SA system, thanks to its self-awareness about 
subsystem failures. The solution is to build robust (redundancies), self-aware systems, to continuously 
expand the KG and to add new queries.  

Today, the AI situation awareness system is not able to perform real-time. Capability for real-time 
processing can be reached by advanced optimisation, architectural changes, and improved hardware. 
In our opinion the concept of the AI SA system has proven to fulfil the requirements that could be 
implemented and evaluated within the scope of the project. In addition, its architecture revealed 
auspicious qualities (i.e., higher levels of awareness) for the realisation of more advanced human-
centred design to reach human-machine team situation awareness. Therefore, we recommend 
pursuing the elaboration of these levels before heading towards a higher level of technological 
readiness (TRL 2 and more). 

Another application of the artificial situation awareness system might be in training ATCO students in 
their scanning for monitoring tasks and to implement evidence-based training for licensed ATCOs. 
International Civil Aviation Organization (ICAO) promotes this shift in training paradigm to individually 
enhance competencies. The AI SA system could create a digital twin of each ATCO about their actual 
performance in comparison to best practice for monitoring task performance that AI SA system has 
learnt across ATCOs.  

From the point of view of the socio-technical system, the AI SA system has the potential to amalgamate 
a team of ATCOs - representing unique fast decision-makers and experts - with a machine that can 
reinforce these strengths by providing information relevant for their adaptation. Safety – especially in 
dynamic fields – isn’t only a matter of reliability and accuracy of system components. To pay attention 
to relevant details and keep up with changes in a complex and dynamic environment is challenging (as 
you might have read in the preface of Jenny). This skill is improved with self-monitoring, that can be 
fostered by the feedback from the AI SA system. If the future AI SA system allows ATCOs to keep an 
active role, this will nourish their professional pride as a team capable to manage an incredible job. 
Pride is an emotion that promotes thoroughness, effort, and learning – and ultimately satisfaction with 
life. These are all factors protecting ATCOs against overload, stress, and burnout. A truly human-
centred system like this would go beyond ergonomic design of HMI and circumvent efficiency-driven 
automation solutions that turn out to be a trap for human effectiveness.  
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7 Glossary 

This section provides an overview of the terminology used across different deliverables of the AISA 
project and definitions. 

Term Definition 

AI Situation Awareness  
System (AI situational 
awareness system) 

The operating system that will be implemented by ATM system providers 
in the future. It means the future ATC system together with an AISA AI 
engine. In some cases, the system is referred to as “AI based support 
system” 

AI Situation Awareness Model 
(AI SAM) 

The model developed within AISA which represents core functions of the 
future system (AI SAS) relevant for the project. 

AI SA KG system System developed during the AISA project, composed of a KG, AI SA tasks 
and ML modules. Also referred to as “the AI SA system”, “the system”, 
and “PoC system”. 

Artificial Intelligence The ability of a digital computer or computer-controlled robot to perform 
tasks commonly associated with intelligent beings. The term is frequently 
applied to the project of developing systems endowed with the 
intellectual processes characteristic of humans, such as the ability to 
reason, discover meaning, generalise, or learn from experience. (Source: 
Britannica) 

Artificial situation awareness This term is used interchangeably with the term “machine situation 
awareness”. Both terms refer to situation awareness that is generated by 
the AI situation awareness system. 

ATM environment The overall set of systems, processes, functions, and infrastructure where 
air traffic control takes place. The current environment describes the 
status during the preparation of this document (i.e., 2020, 2022), whereas 
the future environment predicts the situation in 2035-2040. 

ATC system The set of systems the ATCO is using, including the ones which are 
working in the background and are directly linked to those visible to the 
ATCO. 

Automation The creation of technology that will execute a certain task or set of tasks 
automatically. 

Conflict Loss of safe separation (5 NM horizontally, 1000 ft vertically). 

Exercise Product of an ATCO’s interaction with a scenario. Each ATCO input 
influences the traffic flow, making every ATCO’s exercise unique and 
different from the original scenario. 

Final prediction The conflict detection ML module output after all ATCO clearances were 
issued for the aircraft pair and no further trajectory changes were made. 

Initial prediction The conflict detection ML module output before any ATCO clearances 
were issued for the aircraft pair and no trajectory changes were yet 
made. 
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Machine situation awareness This term is used interchangeably with “artificial situational awareness”. 
Both terms refer to situation awareness that is generated by the AI 
situation awareness system. 

Monitoring This term is used in two different manners in this document. First of all, 
as the work plan indicates, AI SA plans to start primarily with those 
“monitoring tasks” which currently (2020) require only monitoring type of 
contribution by the ATCO either due to the relatively significant level of 
automation or because the task itself is simple and requires no more 
interaction than monitoring.  

On the other hand, in terms of classification of future tasks among human 
and machine, “monitoring” means if in the future (medium or long-term 
scenario) a task is so highly automatised (with AI involvement), ATCOs will 
only need to perform monitoring activities. 

Scenario The design of the airspace and air traffic in the ESCAPE Light simulator. 
Each scenario is defined by a specific traffic mix. 

Situation Awareness  SA is the perception of environmental elements and events with respect 
to time or space, the comprehension of their meaning, and the projection 
of their future status. (Source: Mica R. Endsley, “Toward a theory of 
situation awareness in dynamic systems”) 

Situation of interest Traffic situation relevant for the analysis of situational awareness defined 
by the minimum distance between two aircraft. Note: the limit for the 
situation of interest may be different regarding the needs of the analysis 
(i.e., the conflict detection ML module uses 25 NM as the limit, whereas 
in the SA comparison analysis, 10, 7.5 and 12.5 NM were used). 

Shared situation awareness Shared perception of environmental elements and events with respect to 
time or space, the comprehension of their meaning, and the projection of 
their future status within a team. 
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Appendix A Extracts of the SHAPE Questionnaire 

A.1 SASHA_Q 

 

 

A.2 SASHA_L 
1. E2S2.1:  

1.1. Which aircraft are in conflict?  
1.2. What additional conflicts do you see? (2x)  
1.3. Which aircraft have an exit conflict?  
1.4. Is there any non-conformance? (trick question)  

2. E2S2.2:  
2.1. Which aircraft are in conflict?  
2.2. What do you need to pay attention to? (2x) (1x trick question)  
2.3. Is there any non-conformance? (2x) (1x trick question)  

3. E2S3:  
3.1. Which aircraft are in conflict at exit point?  
3.2. Is there any conflict? (2x)  
3.3. Did you notice anything?  
3.4. Is there a non-conformance?  
3.5. What do you need to pay attention to? (trick question)  
3.6. Which aircraft can climb?  

4. E2S4.1  
4.1. Which aircraft need to descent? 
4.2. Center is now available. Which aircraft can turn for a direct to?  
4.3. Is there a conflict?  
4.4. Is there any non-conformance? (trick question)  
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5. E2S4.2  
5.1. Which aircraft have an exit conflict?  
5.2. Mil East will be on in 2 minutes. Who is flying through the military?  
5.3. Which aircraft are in conflict?  
5.4. Is there any non-conformance? (trick question) 
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Appendix B Description of Computer Vision Tool (CVT) 
The next paragraphs describe on a technical low-level how CVT works. The whole process is divided 
into five steps  

• Screen detection  

• Coordinate system mapping from ”global space” to ”screen space”  

• Importing airplane positions, compensating user screen movement, and zooming, map 
geographic coordinates to screen coordinates  

• Label detection  

• Detecting when an airplane was looked at 

The first step is technically the most complex. Since the ATCO’s gaze is stored in the coordinate system 
of the ET glasses, it cannot simply be transferred to the screen recording. Instead, the screen must first 
be identified in the ET video to make this possible. Complex computer vision algorithms were used for 
this purpose. The different steps are visualised in Figure 36 and are shortly described in the list below. 

 

Figure 36: Steps for the screen detection of the Computer Vision Tool 

1. The raw input image 
2. Gray scaling and Gaussian blurring  
3. Binary thresholding (to black and white)  
4. Canny Edge Detection (more information is described in the article by  W. Rong et al. (Rong et 

al., 2014)): to detect edges in the video  
5. Contour detection: detect connected areas  
6. Contour filtering: The screen is one of the largest contours and is roughly in the center. That 

can be used to identify the screen contour  
7. Cutting the original and thresholded grayscale image to the bounding boxes of the detected 

contour  
8. Remove the largest and smallest connected areas from the image (to reduce noise)  
9. Canny Edge detection  
10. Hough transform (non-probabilistic) to detect line-candidates (more information is described 

in the article by D. Duan et al. (Duan et al., 2010)) 
11. Calculate line intersections (= screen corners), classify them to screen corners, average the 

individual corner positions, and low-pass filter their positions (Assumption is that head 
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movement is smooth, so the corners should not move too much between frames. That makes 
the estimation a bit more robust towards line outliers)  

12. Map the detected corners back into the global space. Now it is possible to get the screen space 
coordinates of a point in the Eye-Tracking-glass-space.  

13. After the screen has been identified in the ET video, the gaze can be transformed from the 
glasses’ coordinate system to the screen’s coordinate system. The transformation makes it 
possible to display the gaze in the screen recording.  

Next, the aircraft must be detected and marked. For this, the ESCAPE Light logs are used, which contain 
the positions of the aircraft. However, since these are given in geographic coordinates, these 
coordinates must also be used in the screen recording. For this, the position of Switzerland was used. 
Since Switzerland always keeps the same shape, except in the military scenario, it is possible to define 
two always visible points and to which the real longitudinal and latitude coordinates are assigned. 
Since Switzerland’s contrast and surroundings are always the same and unique, it is not a problem to 
always recognise Switzerland and, therefore, the two points. The recognition of Switzerland is also vital 
to identifying the zoom factor. After defining these two points, the ESCAPE Light log data can tag the 
aircraft.  

The next step is to identify the label. Since the ATCO often does not look at the airplane itself (white 
dot) but concentrates on the label, it is crucial to be able to identify the label to the corresponding 
aircraft. For this, computer vision algorithms were used again, and Tesseract OCR, an optical character 
recognition engine. The article by R. Smith (Smith, 2007) describes more information to Tesseract OCR. 
With the engine, it is possible to read text from an image, in this case, the callsign in the labels. Thus, 
it is possible to assign the corresponding label to each aircraft. 

In the upper left corner in Figure 37, some information about the progress and confidence of the tool 
is given. In the lower part of Figure 37, the tool’s confidence is shown again graphically. What 
confidence means is explained in the following paragraph. Figure 38 shows what information the tool 
has detected on the screen. The gaze of the ATCO is displayed with a big blue ring. This ring moves 
with the real view from the ET recording. 

  

Figure 37: Information on ET-Recording in CVT 

Furthermore, the detected aircraft are marked with a small green ring. The aircraft is then additionally 
marked again with the callsign. However, as shown in the picture, the green rings do not perfectly 
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match the position of the aircraft. This is because the synchronisation of the df with the actual gaze 
from ET-recording is not done properly. What this means exactly will be explained in a later paragraph. 
Also, the found labels are marked with a small blue ring. If the label was not found, the small blue ring 
remains on the green ring. Additionally, Switzerland is highlighted with a solid green line. 

 

Figure 38: Information on Screen recording in CVT 

Finally, all that remains is to store the created data into a new df. For this purpose, the tool is started, 
and it stores in a list when which aircraft is viewed. The label and the aircraft itself are taken into 
account for the detection. For this, every aircraft and label is taken into account, which lies within the 
gazes (big blue ring).  
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Appendix C Graphs  
In the following, graphs are shown which are interesting to examine the behaviour of the ATCO before 
and after the experiments. For this purpose, a graph for experiment 1 and 2 is shown each time. 

C.1 Karolinska Sleepiness Scale 
The scale measures the subjective level of sleepiness at the time when the question was asked. On this 
scale subjects indicate which level best reflects the psycho-physical (Shahid et al., 2012). The first five 
levels refer to an active state whereas the last 4 levels refer to a sleepy state. 

Participants were asked “How do you feel at the moment?”  

It can be seen in Figure 39 that the average refers to an active state, but some were more tired after 
the experiment 1. It can be seen in Figure 40 that the average refers to an active state, and the 
experiment 2 made the participants more tired, but on a low level. 

 

Figure 39: Sleepiness before and after experiment 1 
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Figure 40: Sleepiness before and after experiment 2 

C.2 Stress 
The aim was to measure how stressed the participants felt during and after the experiment. Question 
“How stressed do you feel overall?”  was asked for this purpose. 

Figure 41 shows that the participants were less stressed after experiment 1, and the extremum is 
higher after it. experiment 2 is different from experiment 1 as seen in Figure 42. The participants are 
less stressed before experiment 2, but more extremes show up here. 
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Figure 41: Stress level before and after experiment 1 

 

Figure 42: Stress level before and after experiment 2 
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C.3 Satisfaction 
The ATCOs were asked after each scenario how satisfied they were with their own performance. Figure 
43 shows the results of the question in experiment 1 and Figure 44 shows the results for experiment 
2. Overall satisfaction was higher in experiment 1 than in experiment 2. This may be because the ATCOs 
themselves did not have control in experiment 2 but carried out commands. In experiment 1 (Figure 
43) it can be seen that satisfaction was very high and that, in general, the scenarios in which the 
conflicts were better resolved performed better. In experiment 2, it is not clear how the results 
differed, as the scenarios lasted for different lengths of time, were answered differently in relation to 
the queries, and were not interactive. 

 

Figure 43: Satisfaction of ATCOs for each scenario of experiment 1 

 

Figure 44: Satisfaction of ATCOs for each scenario of experiment 2  
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Appendix D Data Frame for Count – Experiment 1 
This data frame counts how often certain events (e.g, assume, transfer, use of CPDLC, initial calls, use 
of VERA, use speed vector change) occurred. Based on this data frame, it is possible to roughly estimate 
the mental workload of the ATCOs, since the assume and initial calls should occur equally often for all 
ATCOs, because the scenarios and the occurring aircraft were the same. 

The following shows the data frame for the count of assume for four different ATCOs. The other data 
frames are developed in the same way. 
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Appendix E Data Frame for Conflict Comparison – 
Experiment 1 

This data frame determines the duration of the conflicts and the solution. It can be used to quickly 
determine which ATCO has identified the conflicts quickly/slowly and which solutions do not meet the 
standard. It shows when the conflict started and when it was finished (i.e. when the ATCO detected 
the conflict). Furthermore, it shows which solution the ATCO chose to solve the conflict. 

Only the first four ATCOs are shown to present the idea of the data frame, but to prevent direct 
attribution of the ATCO. The figure below shows the data frame for the E1S2 scenario. For the other 
scenarios it looks the same with the corresponding conflicts. 
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Appendix F Mean Reaction times data frame  
of experiment 1 

This data frame compares how fast the ATCOs reacted to an initial call in one scenario. It means from 
when they have detected the aircraft when the pseudo-pilot calls the Swiss radar for the first time. 
ATCOs who see the aircraft quickly remembered it and therefore statements can be made about the 
SA. High negative numbers implicate that the ATCO assumed an aircraft before the pilot called. 

Only the first four ATCOs are shown to present the idea of the data frame, but to prevent direct 
attribution of the ATCO. 

 

 

https://www.sesarju.eu/


DELIVERABLE 5.2 
REPORT ON HUMAN-MACHINE DISTRIBUTED SITUATION AWARENESS 
 

 

  
 

Page I 153 
 

  

 

Appendix G Data Frame for Checkbox – Experiment 1 
With this data frame, the ATCOs can be compared by checking the commands for each aircraft. 
Communications were checked for different code words like assume, transfer, speed, HDG, direct, 
climb, and descent. Whenever one of these terms was used for an aircraft, it was noted for the ATCO:  

• If the ATCO called the aircraft and the codeword was mentioned, it is marked with a checkmark 
symbol,  

• If the ATCO called the aircraft and the codeword was not mentioned, it is marked with a cross 
symbol,  

• If the ATCO did not call the aircraft at all, a hyphen sign is displayed.  

In the next step, however, only those events were analysed for which it can be said with certainty that 
they should have occurred. 

Only the first four ATCOs are shown in the figure below to present the idea of the data frame, but to 
prevent direct attribution of the ATCO. Also, not all aircraft are shown, because it is the same principle 
for all of them. The figure shows the data frame for the E1S2 scenario, but the structure for the other 
scenarios is the same. 
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Appendix H Data Frame to Compare Time – Experiment 1 
This data frame is the extension of the checkbox data frame. Each checkmark was replaced by the time 
when the event took place. This way, it can be determined which ATCO will carry out events sooner or 
later. The time when the transfer call was made is especially interesting because it can be deduced 
how long the aircraft was on the frequency. 

Only the first four ATCOs are shown in the figure below to present the idea of the data frame, but to 
prevent direct attribution of the ATCO. Also, not all aircraft are shown, because it is the same principle 
for all of them. The figure shows the data frame for the E1S2 scenario, but the structure for the other 
scenarios is the same. 

 

https://www.sesarju.eu/


DELIVERABLE 5.2 
REPORT ON HUMAN-MACHINE DISTRIBUTED SITUATION AWARENESS 
 

 

  
 

Page I 155 
 

  

 

Appendix I Data Frame for Number of Events per Call & 
Number of Conflict Solutions – Experiment 1 

From the following data frames, it can be counted how many commands are given to the pseudo-pilot 
in a single call. With an ATCO that has a good SA, it is expected that some commands will be given in 
one call, e.g., a direct command in the initial call.  

The data frame also counts how many solutions have been applied until the conflicts are finally 
resolved. This allows for the ATCO's misperceptions of the situation to be identified and thus 
conclusions to be drawn about the SA. 

A # symbol (“hashtag”) marks each time a new call has taken place. The & symbol (“ampersand”), on 
the other hand, marks when several events have been transmitted to the pilot in one call. If a # symbol 
is followed by a - (dash), then the ATCO has not issued any further commands. 

Only the first two ATCOs are shown in the figure below to present the idea of the data frame, but to 
prevent direct attribution of the ATCO. The figure shows the data frame for the E1S2 scenario, but the 
structure for the other scenarios is the same. 
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Appendix J Data Frame for Pearson Correlation 
The data frame describes the scores for the five different categories (SASHA_Q, SASHA_L correct, ET 
conflict detection, implicit measurements) for the Pearson correlation. Only the first four ATCOs are 
shown in the figure (E1S2) below to present the idea of the data frame, but to prevent direct 
attribution of the ATCO. The structure is the same for the E2S2.1 data frame. The only difference is 
that that the SASHA_L score is included in the E2S2.1 scenario. 
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Appendix K Correlation of Conflict Detection Module Input 
Values Deviation with Prediction Error 

A brief analysis was made to determine whether using the input values to ML conflict detection (CD) 
module that deviate from the training dataset correlate with the accuracy of the CD module. Each of 
the input variables for each of the conflicts was analysed to determine how much it deviates from the 
training data. Input variables were related to flight parameters of aircraft involved in particular conflict 
(altitude, track, speed, and rate of climb/descent). Training data was characterised by mean value and 
standard deviation, assuming normal distribution as explained in Section 1.2.1.3. Input variables were 
scaled according to number of standard deviations away from thus described training data inputs. 

On the other hand, CD module conflict prediction error was calculated in terms of difference between 
the predicted minimum distance between aircraft and actual minimum distance. Correlation between 
deviation of input variables values and CD module’s prediction error was performed in IBM SPSS. The 
results are presented in Table 27. No significant correlation was found. 

Table 27: Correlation of Deviation of Input Variable Values with Conflict Detection Module 
Prediction Error 

Variable Pearson Correlation Coefficient Sig. (2-tailed) 

Altitude of 1st Aircraft -0.026 0.864 

Altitude of 2nd Aircraft -0.107 0.482 

Speed of 1st Aircraft 0.143 0.349 

Speed of 2nd Aircraft 0.122 0.426 

Track of 1st Aircraft -0.246 0.103 

Track of 2nd Aircraft 0.054 0.725 

ROCD of 1st Aircraft -0.279 0.063 

ROCD of 2nd Aircraft 0.103 0.499 
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Appendix L Experimental Plan of the AISA Project 
The AISA project aims to study the effects that automation of ATCO monitoring tasks has on human-
machine team situation awareness. The overarching research question is stated in the project’s 
fundamental documents – can the AI system be made aware of the traffic situation (in the narrow field 
of en-route ATC operations) and can that artificial awareness provide transparency and generalization 
to automated systems? We posit that the “machine can be aware of the situation, including its state, 
in a domain-specific way, and it can take part in the team situational awareness and that such system 
can be used to automate monitoring tasks in transparent manner.” (AISA Consortium, 2019). This 
document serves as an overview of all research questions – technical ones that guide the development 
of system components and general ones which guide the overall project. Each research question, 
combined with related requirements, informed the creation of objectives. Therefore, identified 
objectives can be used to confirm technical achievements (technical objectives) or can be used to 
validate overall system achievements (validation objectives). The objectives are described along with 
methods proposed for their achievement and relevant results available at the time of submission of 
this document (May 2022). For detailed results explanation, each objective has a reference to the 
relevant deliverable. 

Technical objectives are mostly related to the AISA system components, so the relevant documents 
are WP2, WP3, and WP4 deliverables. Deliverable 2.2 presented the requirements for the system 
described in D2.1, so they informed the creation of technical objectives. After the development of the 
components (during WP3 and WP4), execution of 2 experiments helped answer the guiding question 
of the project and complete the validation objectives. As opposed to the technical objectives, no 
requirements were set for this part of the project, so they were not used for validation objective 
creation. The most important document pertaining to those parts of the Experimental plan is this 
deliverable (D5.2). It contains the sum of all experiment research questions (grouped by topics), 
complete methodology, and results obtained from the two experiments. 

The descriptions of the two experiments differ slightly - experiment 2 has an additional section 
describing the differences between the initial plan and the final one, due to modifications necessary 
to answer relevant questions on ATCO and team SA. Both experiments, along with explanations for 
the introduced changes, are presented in the associated chapter.  

The technical and validation objectives’ sections will follow a similar structure by including research 
questions and relevant requirements (if any), the planned methodology, and results/data which 
answers the research questions and objectives. 

L.1 Overall objectives 
Overall system development was guided by the following research questions: 

• Is the proposed architecture flexible and fast enough for this purpose? (Flexibility of the 
framework for knowledge graph management and reasoning) 

• What are the risks associated with the AI situational awareness system? (Risk assessment) 

Translation of these research questions into objectives and their solving is done in Table 28. 
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Table 28 The overall system research questions, technical objectivees, and results 

Related research 
question 

Objective related to 
Grant agreement  

Methodology Result 

Is the proposed 
architecture flexible 
and fast enough for this 
purpose? 

1.1. The proposed 
architecture 
should be 
flexible enough 
for the purpose 
of knowledge 
graph 
management 
and reasoning 

Development of KG in such 
a way that it enables 
flexible adding/changing of 
data 

Deliverable 4.3 (AISA 
Consortium, 2021f) 
shows the 
methodology and 
instances of data 
included in the 
knowledge graph, and 
what they are based 
on. Since some data did 
not exist in AIXM and 
FIXM, this deliverable 
proves the flexibility of 
the KG as more data 
(“plain” data) has been 
added, and some parts 
of FIXM and AIXM have 
been modified into a 
joint UML diagram on 
which the KG is based 
on. 

System performance 
analysis in this 
deliverable showed 
that the system 
provides answers at 
approximately the 
same rate as the ATCO 
radar refresh rate 
(approx. 5 s). 

1.2. The proposed 
architecture 
should be fast 
enough for the 
purpose of 
knowledge 
graph 
management 
and reasoning 

Comparison of system 
performance (ATC 
knowledge graph creation, 
reasoning execution) to an 
equivalent system with a 
similar purpose 

Which are the risks 
associated with the AI 
situational awareness 
system? 

1.3. Perform the risk 
assessment to 
determine the 
risks associated 
with the AISA 
system 

Identification of potential 
hazards via application of 
an existing methodology. If 
an appropriate 
methodology cannot be 
found, a new one should 
be developed 

Deliverable 5.1 (AISA 
Consortium, 
2022)applied an 
existing ICAO 
methodology for risk 
assessment. Two 
metrics were defined to 
characterize each risk – 
likelihood and severity. 
In all, 74 hazards were 
identified, with 150 
mitigation measures 
proposed which 
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significantly reduced 
the number of non-
acceptable and 
tolerable risks. 
Additionally, an AI 
hazard library was 
created to serve a risk 
assessment starting 
point for other AI 
projects. 

System components can be seen in Figure 45, depicting the conceptual diagram of the proof-of-
concept system described in the AISA ConOps. Figure 45 shows the main parts of the system – 
knowledge graph, reasoning engine, and machine learning modules. Research questions and technical 
objectives in this section are grouped according to the system components they pertain to, along with 
related sub-systems. 

 

Figure 45 Conceptual diagram of the proof-of-concept machine situation awareness system 

 

L.1.1 Knowledge graph and reasoning engine 
The ATC knowledge graph, which serves as the central part of the AISA system, stores air traffic data 
and knowledge and provides meaning to the stored data. The developed AISA system’s reasoning 
engine is based on knowledge graphs and interacts with the machine learning modules. A reasoning 
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engine is capable of explaining the obtained results and provide insight into inconsistencies and 
improbable results. This allows the system to be close to the process of thinking that ATCOs have when 
making decisions and conclusions. Research questions related to the knowledge graph and reasoning 
engine, as presented in the Grant Agreement (AISA Consortium, 2019), are: 

• How feasible is it to encode all required semantics for ATC en-route operations? 

• Is first-order logic powerful enough for all types of queries that will be needed? 

• Can a sufficiently fast query execution over a large triples store be achieved? 

The encoding of semantics for ATC en-route operations proved to be very feasible albeit time-
consuming. Most of the required semantics could be found in Aeronautical Information Exchange 
Model (AIXM) and Flight Information Exchange Model (FIXM) and were assumed from these models. 
The missing information (such as Flight Level Allocation Scheme/FLAS) was identified and then added 
by creating a unified UML diagram based on which the encoding was done. 

The first-order logic application ensures the system’s SA reliability even in multiple modified 
environments. This logic is proven to be powerful enough to perform all achieved monitoring task 
queries. Tasks which were not achieved are mostly related to ML modules which hadn’t been 
integrated with the rest of the system. 

Fast query execution enables the continuous monitoring of traffic situations. When introducing large 
stores of triples, time consumption can be a limiting factor for a system to operate in real-time. The 
processing time analysis implies that the system is sufficiently fast as it takes 5s to process a single 
traffic situation graph. At the time of the analysis, hardware was adapted for the processing by using 
multiple cores. Query execution time can be further improved with hardware adaptation. 

Knowledge-graph-related requirements from Deliverable 2.2 (AISA Consortium, 2020b) are divided 
into these categories:  

• Requirements for Knowledge Graph and Reasoning Engine, 

• Requirements for UML to RDFS/SHACL Mapper, 

• Requirements for Proof-Of-Concept KG-System, 

• Requirements for KG-Prolog Mapper, 

• Requirements for Populating the KG, 

• Requirements for Automation of Monitoring Tasks in Proof-of-Concept System, 

• Requirements for Knowledge Engineering for En-route ATC Operations. 

By combining the relevant research questions and requirements, objectives related to the knowledge 
graph and its sub-systems are presented in Table 29. 

Table 29 The KG and its subsystem research questions, objectives, and results 

Research 
question or 
requirement 

Technical objectives 
related to 
Requirements in D2.2 

Methodology Result 

Classes and 
properties used in 
the knowledge 
graph shall be 

2.1. RDF Schema must 
be used in the KG 
to define classes 
and properties 

Appropriate RDF Schema 
development prior to 
creating traffic data 
instance graphs 

The UML to RDFS/SHACL 
Mapper was developed. The 
RDF Schema consists of 
existing classes defined by 
aeronautical exchange 
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defined using RDF 
Schema (RDFS) 

formats (AIXM, FIXM) and 
user-defined classes. More 
information about the 
Mapper can be found in 
Deliverable 4.1 (AISA 
Consortium, 2021g) while 
Deliverable 4.3(AISA 
Consortium, 2021f)contains 
more information about RDF 
instances, classes and 
properties. 

KG shall be 
queried with 
SPARQL 

2.2. KG must be 
queried with 
SPARQL 

Use of SPARQL queries in 
reasoning engine 
development/ATCO task 
implementations 

Java task implementations 
contain and execute SPARQL 
queries to access data stored 
in the KG. Used queries can 
be found in Deliverable 4.4. 
(AISA Consortium, 2021e) 

Data instances 
shall be provided 
in RDF 

2.3. Data instances 
must be provided 
in RDF 

ESCAPE Light data log will 
be exported to XML 
format and converted to 
RDF 

Knowledge graphs are 
converted from XML to RDF 
format to be used as AISA 
system inputs.  

Additionally, the conversion 
from XML to RDF has been 
automatized. Used RDF 
instances can be found in 
Deliverable 4.3 (AISA 
Consortium, 2021f) 

SHACL shall be 
used to check the 
instance data 
against the 
constraints and 
validation report 
shall be provided 
in RDF 

2.4. SHACL must be 
used to check the 
instance data 
against the 
constraints and 
validation report 
must be provided 
in RDF 

Appropriate development 
of UML to RDFS/SHACL 
Mapper 

The UML to RDFS/SHACL 
Mapper has been developed. 
It successfully checks the 
instance data against the 
SHACL constraints, and the 
validation report is shown in 
RDF. Details can be found in 
Deliverable 4.1 (AISA 
Consortium, 2021g) 

Mapper shall 
process UML class 
diagrams in XMI 
format 

2.5. Mapper must 
process UML class 
diagrams in XMI 
format 

Appropriate development 
of UML to RDFS/SHACL 
Mapper 

The UML to RDFS/SHACL 
Mapper has been developed 
(AISA Consortium, 2021g) 
and it is also referred to as 
the AISA XMI mapper. The 
mapper takes as input an 
UML class diagram that is 
represented in XMI format. 
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Mapper shall 
process AIXM and 
FIXM UML 
diagrams in full 

2.6. Mapper must 
process AIXM and 
FIXM UML 
diagrams in full 

Appropriate development 
of UML to RDFS/SHACL 
Mapper 

The mapper successfully 
processes AIXM and FIXM 
UML diagrams in full as it 
comes with a plug-in 
architecture and has a FIXM 
plug-in and an AIXM plug-in. 
The plugins are described in 
Deliverable 4.1 (AISA 
Consortium, 2021g) 

User should be 
able to select a 
subset of AIXM 
and FIXM to 
process 

2.7. User can select a 
subset of AIXM 
and FIXM to 
process 

Appropriate development 
of UML to RDFS/SHACL 
Mapper 

A configuration file is 
provided as input to the 
mapper and based on it, 
selected subsets of models 
(chosen by the user in the 
configuration file) are 
extracted by the extractor 
module. These extracted 
subsets of models are 
mapped by model-specific 
plugins to RDFS/SHACL 
documents and provided as 
RDF/XML files. More details 
can be found in Deliverable 
4.1(AISA Consortium, 
2021g). 

Mapper shall 
process other 
UML diagrams 
(outside of AIXM 
and FIXM) if 
provided in the 
same format as 
AIXM and FIXM. 

2.8. Mapper must 
process other UML 
diagrams (outside 
of AIXM and FIXM) 
if provided in the 
same format as 
AIXM and FIXM 

Appropriate development 
of UML to RDFS/SHACL 
Mapper 

plain.xq is one of the three 
plugins for the mapper and it 
targets models which are not 
based on AIXM and FIXM 
(but are in the same format) 
and do not use stereotypes 
meaning they can be 
processed as well. The 
mapper and the plug-in are 
explained in Deliverable 4.1 
(AISA Consortium, 2021g). 

Instance data 
shall be imported 
into the KG in 
RDF 

2.9. Instance data must 
be imported into 
the KG in RDF 

Exported traffic data 
should be converted to 
RDF format during pre-
processing. RDF graphs 
should be stored in AISA 
system input folders to 
enable their import into 
the KG 

The RDFS/SHACL documents 
are in RDF/XML format, but 
it is easy to transform from it 
to Turtle RDF syntax. One 
approach is the functionality 
from Apache Jena and this 
approach is demonstrated by 
the TransformXML2TTL.java 
program further explained in 
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Deliverable 4.1 (AISA 
Consortium, 2021g). 

KG shall provide 
RDF graph store 

2.10. KG must 
provide RDF graph 
store 

The KG uses an RDF graph 
store on the Apache Jena 
TDB (a free RDF database 
used to store and query 
RDF data) 

All the basic functionality for 
working with RDF, RDFS, 
SPARQL, and SHACL in Java is 
provided by Apache Jena and 
as the RDF graph store Jena 
TDB is used. Chapter 3 of the 
Deliverable 4.1 talks about 
the graph storage. (AISA 
Consortium, 2021g). 

KG shall provide 
SPARQL 
endpoints 

2.11. KG must 
provide SPARQL 
endpoints 

Creation of SPARQL 
endpoints 

A local Jena Fuseki server is 
used to store data by using 
the predefined dataset URL. 
Three SPARQL endpoints (for 
updates, queries, and graph 
store protocols) are also 
defined. 

KG shall provide 
reasoning/entail
ment over RDF 
graphs 

2.12. KG must 
provide 
reasoning/entailm
ent over RDF 
graphs 

Use of KG-side reasoning 
during ATCO task 
implementation 

KG-side reasoning is used in 
some ATCO task 
implementations(AISA 
Consortium, 2021f, 2021e). 

KG shall provide 
SHACL processors 
for checking 
conformance 
between the 
knowledge graph 
and the schema 
and for executing 
inference rules 
encoded in SHACL 

2.13. KG must 
provide SHACL 
processors for 
checking 
conformance 
between the 
knowledge graph 
and the schema 
and for executing 
inference rules 
encoded in SHACL 

Appropriate development 
of UML to RDFS/SHACL 
Mapper. 

The UML to RDFS/SHACL 
Mapper checks conformance 
between the KG and the 
schema and checks the 
instance data against the 
SHACL rules.  

Deliverable 4.1 provides 
more information about the 
subject. (AISA Consortium, 
2021g). 

KG-Prolog 
mapper shall 
receive results of 
the SPARQL 
queries or 
complete KG and 
convert them into 
predicates 

2.14. KG-Prolog 
mapper must 
receive results of 
the SPARQL 
queries or 
complete KG and 
convert them into 
predicates 

Appropriate development 
of KG-Prolog Mapper 

Alternative ATCO task 
implementation method 
(Java classes) was chosen and 
used.  

Chapter 4 of Deliverable 4.4 
gives a full explanation for 
the decision (AISA 
Consortium, 2021e). 
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Based on the 
results of the 
logic programs, 
mapper shall 
produce SPARQL 
update requests. 

2.15. Mapper must 
produce SPARQL 
update requests. 

Appropriate development 
of KG-Prolog Mapper 

Alternative ATCO task 
implementation method 
(Java classes) was chosen and 
used.  

Chapter 4 of Deliverable 4.4 
gives a full explanation for 
the decision (AISA 
Consortium, 2021e). 

Based on the 
results of the 
logic programs, 
mapper shall 
produce Prolog 
rules 

2.16. Mapper must 
produce Prolog 
rules 

Appropriate development 
of KG-Prolog Mapper 

Alternative ATCO task 
implementation method 
(Java classes) was chosen and 
used.  

Chapter 4 of Deliverable 4.4 
gives a full explanation for 
the decision (AISA 
Consortium, 2021e). 

Mapper shall 
update KG with 
results of SPARQL 
update requests 
and Prolog rules 

2.17. Mapper must 
update KG with 
results of SPARQL 
update requests 
and Prolog rules 

Appropriate development 
of KG-Prolog Mapper 

Alternative ATCO task 
implementation method 
(Java classes) was chosen and 
used.  

Chapter 4 of Deliverable 4.4 
gives a full explanation for 
the decision (AISA 
Consortium, 2021e). 

Mapper shall 
derive shape of 
predicates (arity 
and ordering of 
attributes) not 
only from 
validating SHACL 
properties but 
also from non-
validating 
properties 

2.18. Mapper must 
derive shape of 
predicates not only 
from validating 
SHACL properties 
but also from non-
validating 
properties 

Appropriate development 
of KG-Prolog Mapper 

Alternative ATCO task 
implementation method 
(Java classes) was chosen and 
used.  

Chapter 4 of Deliverable 4.4 
gives a full explanation for 
the decision (AISA 
Consortium, 2021e). 

Populating the KG 
shall be based on 
RDFS produced 
from AIXM, FIXM, 
ML outputs 

2.19. Populating the 
KG must be based 
on RDFS produced 
from AIXM, FIXM, 
ML outputs 

Basing the KG population 
on the RDFS produced 
from AIXM, FIXM, ML 
outputs, and other 
sources 

The population of the KG 
was initially done manually 
and was later automated. 
Both methods relied on the 
RDFS produced from AIXM, 
FIXM, ML outputs and other 
sources. 
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Deliverable 4.3 explains this 
process (AISA Consortium, 
2021f). 

Populating the KG 
should be 
performed by 
data translators 

2.20. Populating the 
KG may be 
performed by data 
translators 

Data processing and 
conversion to be 
performed by data 
translators. 

Initial traffic data processing 
and conversion to RDF was 
performed by data 
translators. The procedures 
were later automatized, 
which allows for quicker 
system operation.  

Chapter 5 of Deliverable 4.3 
gives an overview of the 
beginnings of KG population 
(AISA Consortium, 2021f). 

ML outputs and 
other 
aeronautical 
information not 
contained within 
the AIXM and 
FIXM shall be 
adapted for KG 

2.21. ML outputs 
and other 
aeronautical 
information not 
contained within 
the AIXM and FIXM 
must be adapted 
for KG 

Addition of ML module 
data and metadata and 
missing aeronautical 
information to the KG 
during RDFS development 
and KG population 

During RDFS development 
and KG population missing 
information was added and 
fully adapted.  

Deliverable 4.3 mentions this 
missing information and its 
adaptation (AISA 
Consortium, 2021f). 

A subset of 
monitoring tasks 
will be 
implemented 
during the project 

2.22. More than 
75% of defined 
monitoring tasks 
must be 
implemented 

Development and 
implementation of 
monitoring tasks in the 
most efficient way 

Around 80% of monitoring 
tasks have been successfully 
implemented in the Java 
programming language. 
Section 1.2.1.4 talks about 
the automated and 
implemented tasks. 

L.1.2 Machine learning modules 
The project uses the given traffic situation, predictions, and assessments based on machine learning 
to produce KG system outputs. Training data and module descriptions are provided to users via meta-
data to assess and follow the module’s performance. Three ML modules - conflict detection, trajectory 
prediction, and complexity assessment module - use different approaches for predictions to produce 
results from different sources. Research questions related to ML modules are: 

• To what extent can functioning of a ML sub-system be verified by a reasoning engine? 

• What is the best way to integrate ML modules into the KG-based system? 

Machine learning objectives, shown in Table 30, are guided by the following groups of requirements:  

• Trajectory Prediction ML Module requirements, 

• Requirements for Conflict Detection module, 

• Requirements for Air Traffic Complexity Estimation Module. 

Table 30 The ML modules research questions, objectives, and results 
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Related research 
question or 
requirement  

Technical objectives 
related to 
Requirements (D2.2) 

Methodology Result 

Trajectory prediction machine learning module 

What is the best 
way to integrate 
ML modules into 
the KG-based 
system? 

3.1. The module must 
receive input 
information from 
the KG. 

The module uses a filed 
flight plan and actual 
aircraft state as input 
information 

ADS-B data from The 
OpenSky Network and flight 
plan data from the DDR2 
database from 
EUROCONTROL are used as 
input data (AISA Consortium, 
2021a). 

To what extent 
can functioning of 
a ML sub-system 
be verified by a 
reasoning 
engine? 

3.2. The module must 
provide output 
information in a 
standardized 
format that can be 
exported to the 
KG. 

The development of the 
module in such a way 
that it provides its output 
as a waypoints-grid 

The output is given in a 
waypoints-grid which can be 
manually imported in the KG 
(AISA Consortium, 2021a). 

The module shall 
provide KG with 
model meta-data. 

3.3. The module must 
provide KG with 
model meta-data. 

Export and inclusion of 
model metadata to the 
KG 

The module metadata can be 
manually imported in the KG 
(AISA Consortium, 2021a). 

The module shall 
use last known 
aircraft position 
for operation 

3.4. The module must 
use last known 
aircraft position 
for operation 

Use of actual aircraft 
position during the 
development of 
trajectory prediction 

The module uses last known 
aircraft position for the 
dynamic part of the 
trajectory prediction (AISA 
Consortium, 2021a). 

The module shall 
use weather data 
if possible 

3.5. The module must 
use weather data 
if possible 

Training the module on 
traffic data which 
includes weather 
influence 

The module indirectly takes 
into account the weather 
data as it was the cause of 
certain re-routings that were 
used for training the neural 
network (AISA Consortium, 
2021a). 

The module shall 
provide trajectory 
prediction as a set 
of 4D points 

3.6. The module must 
provide trajectory 
prediction as a set 
of 4D points 

Development of the 
module so it provides the 
trajectory prediction in a 
geographical region as 
points in a waypoints-grid 

The result of a trajectory 
prediction are points in a 
waypoints-grid in the time-
domain (AISA Consortium, 
2021a). 

Conflict detection machine learning module 

What is the best 
way to integrate 
ML modules into 

4.1. The module must 
receive input 
information from 
the KG. 

Use of the same data in 
KG system and ML 
module operations  

Conflict detection ML 
module output for each 
aircraft pair and defined 
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the KG-based 
system? 

timestamp (AISA 
Consortium, 2021d). 

To what extent 
can functioning of 
a ML sub-system 
be verified by a 
reasoning 
engine? 

4.2. The module must 
provide output 
information in a 
standardized 
format that can 
be exported to 
the KG 

The module outputs are 
in xlsx form which are 
transferred in RDF from 
which they can be 
exported to the KG 

KG system tasks that use 
module output to issue 
system outputs successfully. 
Deliverable 4.3 provides 
more information about this 
result (AISA Consortium, 
2021d). 

The module shall 
provide KG with 
model meta-data 

4.3. The module must 
provide KG with 
model meta-data 

Addition of ML module 
metadata to the KG 

Metadata (in the form of 
training data statistics) 
added to the KG.  

See Section  1.2.1.3 for 
detailed description. 

ML module 
should be able to 
perform 
prediction 
exploiting open-
access libraries 
(e.g., Scikit-Learn 
or Tensor Flow) 

4.4. ML module can 
perform 
prediction 
exploiting open-
access libraries 
(e.g., Scikit-Learn 
or Tensor Flow) 

Reviewing different open-
source libraries and 
identifying which one can 
be used for the Conflict 
detection module 
prediction 

ML algorithm is based on the 
Scikit Learn mentioned in 
Deliverable 3.2 (AISA 
Consortium, 2021d). 

ML module shall 
be able to provide 
information 
about conflict or 
situations of 
interest between 
aircraft pairs 

4.5. ML module must 
be able to 
provide 
information 
about conflict or 
situations of 
interest between 
aircraft pairs 

Investigation of the new 
approach based on the 
ML techniques to identify 
conflict, SI, or safety 
metrics 

ML module provides 
information about situations 
of interest between aircraft 
pairs (AISA Consortium, 
2021d). 

ML module 
should be able to 
provide 
information 
about safety 
metrics related to 
conflict or 
situations of 
interest between 
aircraft pairs. 

4.6. ML module can 
provide 
information 
about safety 
metrics related to 
conflict or 
situations of 
interest between 
aircraft pairs. 

New approach based on 
the ML techniques to 
provide information 
about the proposed 
safety metrics (such as 
minimum distance, time 
& distance to CPA) 

The ML module provides 
information about safety 
metrics related to situations 
of interest between aircraft 
pairs (AISA Consortium, 
2021d). 

Complexity estimation machine learning module 

What is the best 
way to integrate 
ML modules into 

5.1. The module must 
receive input 

Development of the 
module and integration 
with the KG system 

Currently, ADS-B data from 
OpenSky Network is used as 
ML module input. Traffic 
situation data stored in the 
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the KG-based 
system? 

information from 
the KG 

KG can be modified to serve 
as module input. (AISA 
Consortium, 2021c). 

To what extent 
can functioning of 
a ML sub-system 
be verified by a 
reasoning 
engine? 

5.2. The module must 
provide output 
information in a 
standardized 
format that can be 
exported to the KG 

Development of the 
module to provide 
information in a 
standardized format for 
KG export 

The module generates a 
Microsoft Excel table 
containing traffic complexity 
results (AISA Consortium, 
2021c). 

The module shall 
provide KG with 
model meta-data 

5.3. The module must 
provide KG with 
model metadata 

Definition and addition of 
module metadata in the 
KG 

Module metadata can be 
added to the KG (AISA 
Consortium, 2021c). 

The module shall 
provide sector-
level air traffic 
complexity score 
on a scale from 1 
to 5. 

5.4. The module must 
provide sector-
level air traffic 
complexity score 
on a scale from 1 
to 5. 

Appropriate module 
development 

The ML module is not 
currently able to provide a 
complexity score on a scale 
from 1 to 5. Task conversion 
into complexity score is 
planned for further module 
development. 

L.1.3 Overall evaluation objectives 
Human, machine, and shared human-machine situation awareness are characterised and measured by 
research questions defined in the D5.2. These questions are identified and presented in Experiment 1 
and Experiment 2 descriptions, later in the text. These questions are detailed, exact, and focused on 
one specific desired outcome. The broader questions, from which the aforementioned questions 
arose, are:  

• To what extent are human and artificial SA even comparable?  
• Can questions used to assess SA in humans be effectively translated into SPARQL queries? 
• What is the maximum level of SA that can be obtained with KGs and/or reasoning engines? 
• Does the complexity of knowledge engineering make benefits of artificial SA system irrelevant? 
• Is it safe to include AI situational awareness in conjunction with ATCOs in TSA? (Risk 

assessment) 

Objectives on human, machine or TSA are presented in the Table 31. 

Table 31 The SA research questions, objectives, and results 

Related research 
question 

Validation objective Methodology Result 

What is the 
maximum level of SA 
that can be obtained 
with KGs and/or 
reasoning engines? 

6.1. Assess the 
accuracy of AI SA 
system for en-
route air traffic 
monitoring tasks. 

Binary categorization 
for preserved and 
degraded SA 

The accuracy of the AI SA 
system is high. More 
about the results can be 
found in Section 4.4.1. 

What is the 
maximum level of SA 

6.2. Assess the 
accuracy of AI SA 

Comparing ML module 
prediction values with 

CD machine learning 
module provides 70% 

https://www.sesarju.eu/


DELIVERABLE 5.2 
REPORT ON HUMAN-MACHINE DISTRIBUTED SITUATION AWARENESS 
 

 

  
 

Page I 170 
 

  

 

that can be obtained 
with KGs and/or 
reasoning engines? 

system ML 
modules  

the actual values and 
categorisation of 
results based on the 
defined limit 

accurate predictions 
compared to the 12 NM 
miles SI limit. The analysis 
is presented in Section 
4.4.2. 

What is the 
maximum level of SA 
that can be obtained 
with KGs and/or 
reasoning engines? 

6.3. Assess the level of 
situation 
awareness that AI 
SA system can 
reach 

Assessing awareness 
level by using specific 
framework 

The AI SA system is 
conditionally an 
Awareness Level 5 
system.  

This conclusion is 
presented in Section 
4.4.4. 

Is it safe to include AI 
situational 
awareness in 
conjunction with 
ATCOs in TSA? 

6.4. Assess the impact 
of AI SA system 
inputs on human 
situation 
awareness 

Human performance 
measures based on 
questionnaire answers  

ATCOs judged some AI SA 
inputs useful, but most 
inputs considered 
irrelevant (depending on 
the AI SA information) 
Section 4.3.2. 

Is it safe to include AI 
situational 
awareness in 
conjunction with 
ATCOs in TSA? 

6.5. Assess the impact 
of AI SA System on 
human 
performance 

Measuring the effects 
of AISA system 
outputs in human-in-
the-loop simulations 

AISA inputs helped to 
perceive and solve 
conflicts earlier than 
without the input.  

Section 4.3.1. 

To what extent are 
human and artificial 
SA even 
comparable? 

6.6. Assess and 
compare ATCO and 
AISA system SA 

Compare ATCO SA 
with AI SA system 
outputs on identical 
traffic situations 

There is comparability in 
many answers to SA 
query. Aside this, AI SA 
system detected conflicts 
that none or only some of 
the ATCOs mentioned. 
False alarm and misses 
occurred for both. See 
Section 4.2.  

Is it safe to include AI 
situational 
awareness in 
conjunction with 
ATCOs in TSA? 

6.7. Assess the 
acceptance and 
applicability of AI 
SA System  

Organization of risk 
assessment session 

The AISA system could be 
considered safe with 
current conditions after 
the implementation of 
mitigation measures 
discussed earlier in this 
deliverable. 
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L.2  Experimental Approach and Research Questions  

Experiment 1 

Research questions related to experiment 1 are the ones making up topics “Human Situation 
Awareness” and “Accuracy of Artificial Situation Awareness” in this deliverable. Those questions are: 

• 1.1 What characterizes ATCOs’ scanning patterns and priorities? 

• 1.2 Are different measures for situation awareness (self-ratings, queries, gaze-based analysis, 
and implicit measurements) significantly interrelated according to their meaning? 

• 4.1 Can the monitoring tasks be applied to the KG to achieve situational awareness? 

• 4.2 Does the CD machine learning module provide accurate results regarding situations of 
interest? 

• 4.3 Does the CD machine learning module provide accurate results regarding conflicts? 

• 4.4 Does the AISA system check the status of its sub-systems? 

From the posed research questions, it’s obvious that they deal either solely with human SA or solely 
with machine SA. This is logical because, before the ATCOs complete traffic simulation exercises and 
generate data, there is no data for the AISA system to process and to generate its SA. For this purpose, 
the following plan was created: 

1) The experiment will be performed on-site, in skyguide facilities in Dübendorf, Switzerland. 
Skyguide ATCOs should be informed about the experiment in advance and asked for voluntary 
participation. Volunteers should not be disqualified on the basis of total work experience nor 
experience with the chosen simulation tool.  

2) Traffic scenarios will be developed for the chosen simulation tool – EUROCONTROL Simulation 
Capabilities And Platform for Experimentation (ESCAPE), Light version. The system usually used 
by skyguide ATCOs, SkyVisu, is superior regarding available ATCO tools, but it is not available 
outside of skyguide. ESCAPE Light will be adapted by adding standard measuring tools the 
ATCOs use in daily operations, but the persisting differences between the two operating 
systems must be noted as a potential limitation of the experiment. 

3) Since skyguide ATCOs will be taking part in the experiments, Swiss en-route traffic data should 
be used. The original traffic data will have to be modified because it was “controlled” by ATCOs 
and contains no situations of interest. Changes should be performed by FTTS personnel in 
accordance with skyguide SME’s instructions. Introduced changes must result in specific 
conflicts and situations, so ATCO answers can be compared to predicted answers. The raw 
traffic data used for traffic simulations should also be excluded from the training data of the 
ML modules, so the proof-of-concept system can be tested for generalizability. 

4) The experiments will be performed on computer pairs – one will host the experiment and serve 
as the pseudo-pilot position, while the other will be used exclusively as an ATCO working 
position. If possible, multiple scenarios may be run simultaneously. 

5) ATCOs will complete each prepared scenario, starting with a training scenario which would 
introduce them to the ESCAPE Light system and the differences between it and SkyVisu. A low 
complexity scenario should follow the training scenario, to further improve familiarity with the 
system before starting scenarios whose results will be used for the SA analysis. To avoid the 
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learning effect in the results, caused by certain scenarios being performed by all ATCOs later 
in the experiment and thus being affected by their improved grasp of the system, the 
remaining scenarios will be performed in a random order generated for each ATCO.  

6) Data exported from ESCAPE Light for each scenario completed by an ATCO (referred to as an 
exercise) should be labelled in a way that reflects that information. Data logs should include 
aircraft positions, callsigns, altitudes (current, requested and cleared), headings (current, 
requested and cleared), speed (current, requested and cleared), trajectory lists and 
coordinates of important points (e.g. exit points). This data will be combined with ML modules’ 
outputs and metadata to serve as inputs for the proof-of-concept system. 

7) The AISA system tasks should be applied to each exercise separately, with the KG being 
emptied between each run. This will ensure that there is not data accumulation which could 
slow down the system nor data duplication which could cause erroneous outputs.  

8) AISA system outputs should be analysed to determine if the system is aware of traffic situation 
elements. This can either be performed by formulating SPARQL queries targeting system 
outputs stored on the KG server or by printing all system outputs and analysing them to find 
answers to SA assessment questions. The second experiment should include questions on 
ATCO SA about the same considered traffic situation but in a shared human-machine SA 
environment.  

Three ATCO SA assessment techniques will be used during the first experiment: 

1) Subjective rating – performed after each scenario by ATCOs completing the SASHA_Q 
questionnaire, this technique consists of 6 questions with behavioural descriptions for aspects 
of SA. The scale starts at 0, for statements that are never true, and goes to 6, representing 
statements that are always true for them. 

2) Gaze-based analysis – performed by using eye-tracking glasses and post-processing acquired 
data using available tools. The plan is to use Tobii Pro Glasses 3 and the associated Tobii Pro 
Lab software. Eye-tracking software define a concept of area of interest, which is the surface 
covering the screen element/feature that is being researched. Areas of interest can be either 
statis or dynamic. Since the most important elements of the traffic situation – the aircraft – 
are moving all the time, dynamic areas of interest will be preferable but can be substituted by 
sufficiently large static areas of interest. Eye-tracking data and simulation data will need to be 
synchronized for the analysis. 

3) Implicit performance measurement – used for implicit assessment of ATCO SA, behavioural 
codes can be defined and compared to ATCO radio communications.  

Additional analysis can include biometrical analysis (performed before, during, and after the 
experiment), including but not limited to pulse measurement and skin conductance. Acquisition of 
biometrical data must not affect ATCO performance – sensors and other equipment should not 
increase their workload in any way. Baselines for each biometrical parameter should be established to 
enable calculation of absolute and relative changes. 

Experiment 2 

To assess ATCO opinion on shared situation awareness, a second experiment is conducted. As the 
system isn’t able to operate in real-time, the SPARQL query outputs of the AISA system are obtained 
from the previously recorded data. The research questions from the experiment 2 are:  

• 2.1 Are artificial and ATCO situation awareness comparable?  

https://www.sesarju.eu/


DELIVERABLE 5.2 
REPORT ON HUMAN-MACHINE DISTRIBUTED SITUATION AWARENESS 
 

 

  
 

Page I 173 
 

  

 

• 2.2 Can the AI SA system provide inputs to situation awareness that ATCOs were not aware of? 

• 3.1 Is human performance enhanced by adding machine situation awareness?  

• 3.2 Do ATCOs evaluate artificial situation awareness inputs as useful and trustworthy 
contribution to human-machine team situation awareness? 

• 3.3 Do ATCOs use artificial situation awareness inputs for their situation awareness and 
decision making?  

The main goal of experiment 2 is to investigate if the human and machine situation awareness is 
comparable and what is the ATCO opinion on the AISA system output.  

Initial plan  

Originally, the plan was to provide ATCOs with the static figures of traffic situations while introducing 
AI SA system input. Several issues arose with the initial plan. As those would be the only figures, ATCOs: 

• couldn’t build SA prior to that traffic situation,  

• wouldn’t be provided with the tools that could enable measuring distances and hovering over 
the label to gain additional label data. 

As human SA wouldn’t be built, the measuring of degrading and preserving SA would be inappropriate 
to assess in that environment.  

Revised plan 

To accomplish the validation objectives, experiment 2 should be conducted by using human-in-the-
loop simulations. The revised experiment concept provides ATCOs with the ability to build and 
preserve situation awareness while permitting them to use available system tools. The plan is as 
follows: 

1. In Dübendorf (Switzerland), skyguide premises are used to execute experiment 2. Skyguide’s 
licensed ATCOs are asked to voluntarily participate in experiment 2. Personal data is protected 
and encoded during the experiment's conduction. The selection of the ATCOs is not based on 
their experience or working shifts. During the experiment, two ATCOs provide participants 
with the SME’s explanation and support. 

2. The simulation platform ESCAPE Light is used again with the same available tools as in 
experiment 1. During the experiment eye tracking, screen recording, frontal recording and 
biometrical data are recorded. Two parallel working positions in the same room are 
accompanied by the pseudo-pilots from the Faculty of Traffic and Transport Sciences.  

3. To build ATCO SA, scenarios are designed as follows: the training scenario, human-in-the-loop 
scenario and “watch-only” scenarios. The main difference from experiment 1 is the 
interactivity. As the AISA system can’t operate in real-time, participant’s SA is built based on 
the exercises performed in experiment 1, which means that the interactivity cannot always be 
accomplished. A training scenario is used to prepare and familiarise participants with the 
ESCAPE Light system. This is followed by an interactive scenario and a watch-only scenario. 
Thereafter the order of the remaining watch-only scenarios is randomized. Participants in 
experiment 2 should be different from participants in experiment 1 to avoid differential gain 
in experience with the given system. In the “watch-only” scenarios ATCO and pilot voice are 
synthesised to ensure anonymity.  
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4. ATCO situation awareness is measured additionally with probe technique (SASHA_L) during 
experiment 2. After each query, simulation is shortly frozen (20’’, up to 30’’ in case of more 
extensive questions) to allow ATCOs to answer. 

5. AISA system inputs are hand-picked to avoid overloading ATCOs with the vast amount of 
information regarding AISA system monitoring task outputs. The selection of input, time, and 
notification format is agreed upon and defined with SME’s assistance. The selection of system 
inputs was focused on those traffic situations that imply SA degradation. 

6. AISA system inputs are provided to ATCOs after they answered the queries. As the HITL 
simulation is a modification to the original evaluation plan, and no HMI design was planned 
for the AISA project, AISA inputs are provided in an audio format and at predefined times - 
after a query on aspects of situation awareness is answered.  

L.3 Variables 

The independent variable manipulated is AI SA support. Two conditions are investigated: “no AI SA 
support” in experiment 1 vs. “AI SA support” in experiment 2 (Figure 46). This will be achieved by 
providing auditory input on machine situation awareness (AI SA output to SPARQL query on data form 
experiment 1) to ATCOs in experiment 2.  

The dependent variable is human performance. This is measured in terms of start of conflict solution 
and conflict duration.  

Aside this ATCO reactions to AI SA support are investigated with questionnaires during and at the end 
of experiment 2 to evaluate usefulness and trust. 

As a possible intervening variable mediating the relationship of support of AI SA system in situation 
awareness and human performance scenarios are selected that vary in task load. 

 

 

Figure 46 Experimental design to evaluate the effect of AI SA support on human performance 

In further simulations using data collected in experiment 1, accuracy of ML estimations and predictions 
was assessed. For this SPARQL queries were used and ATCO interactions after the time of query were 
ignored to assess the correctness of AI SA system output to query (e.g. Conflict detection ML module 
output for predicted distance to minimum distance regarding SI aircraft pair). Variables measured are 
performance on air traffic monitoring tasks (operationalised for preserved and degraded SA), accuracy 
of conflict detection ML module to make predictions regarding situations of interest and regarding 
conflicts and analysis of the level of situation awareness that AI SA system can partially or fully achieve. 
For this the concept of Jantsch and Tammemäe (2014b) was used that differentiates 5 awareness 
levels. According to the framework, AISA system is conditionally an awareness level 5 system. 
Conditionally, because of the current method of checking the system inputs – the SHACL rules. If its 
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functioning is bolstered by the implementation of another layer of checks, the estimation of the 
awareness level could be confirmed. 

In order to determine whether real-time operations are feasible, an analysis of graph runtime was 
made. A median of runtime per graph depicted in seconds for number of aircraft shows how the 
runtime increases with the number of aircraft. Depending on various parameters, a runtime per graph 
ranges from under 4 s to over 10 s. Considering ATCO station refresh rate is every 5 s, this is the realistic 
rate with which to compare the AI SA system processing times meaning real-time operations are 
achievable. 

ML module accuracy determination focused not only on the comparison of initial and final predictions 
to the actual distances and time in the scenario, but also on the analysis of the statistical data of each 
aircraft in analysed aircraft pairs. This information was used to try to find the correlation between the 
data used for training the ML module and the accuracy of the predicted minimum distances. Multiple 
correlation analysis showed that these variables are not statistically related. 
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