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Abstract 

Automation is one of the most promising solutions for the airspace capacity problem, however, we believe that to safely 
implement advanced automation concepts in air traffic control it is required that the AI and human can share the 
situational awareness. Exploring the effect of, and opportunities for, distributed human-machine situational awareness 
in en-route ATC operations is one of the main objectives of this concept proposal. Instead of automating isolated 
individual tasks, such as conflict detection or coordination, we propose building a foundation for automation by 
developing an intelligent situationally-aware system. Sharing the same team situational awareness among air traffic 
controller team members and AI will enable the automated system to reach the same conclusions as controllers when 
confronted with the same problem and to be able to explain the reasoning behind those conclusions. Machine learning 
can be used for prediction, estimation and filtering at the level of individual probabilistic events, an area where it has 
so far shown great prowess, whereas reasoning engine can be used to represent knowledge and draw conclusions based 
on all the available data and explain the reasoning behind those conclusions. In this way, the artificial situational 
awareness system will be the enabler of future advanced automation based on machine learning. Here, we will explore 
which technologies and concepts are useful in building the artificial situational awareness system and propose the 
methodology for testing the AI situational awareness. 
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1. Introduction  

 
The air traffic controller’s job will be very different in the 
future; it will have to be adapted to the new circumstances. 
Even today, the growth of air traffic in Europe is straining 
the European air traffic management system. In 2018, en-
route air traffic flow management (ATFM) delays 
increased by 104%, while traffic increased by only 3.8% 
over the same period. Most significant source of en-route 
ATFM delays, as in previous years, was lack of air traffic 
control (ATC) Capacity (34%) [1]. 
Current air traffic throughput for a given sector is 
constrained by air traffic controller (ATCO) workload. 
Increased number of aircraft causes controller’s workload 
to rise to the level where it is possible for ATCO to lose 
situational awareness (SA) which leads to unsafe 
operations. Demand capacity balancing (DCB) measures 
are then employed to reduce the workload on individual 
ATCOs and ATFM delay is thus created.  
Automation is one of the most promising solutions for the 
capacity problem, but it is clearly stated in the SESAR 
Single Programming document for 2019-2021, that the 
human should be kept in the loop in order to ensure safety: 

Automation could provide the key to significant 
performance improvements across many 
aspects of ATM. On the other hand, human 
cognitive abilities, especially in safety-critical 
situations, can have positive benefits and 
provide strong arguments against full 
autonomy in certain situations. The challenge 
is therefore to propose solutions with 
automation levels or autonomy that have the 
capability to provide substantial and verifiable 
performance benefits whilst fully addressing 
safety [2]. 

Therefore, we believe that to implement advanced 
automation concepts it is required that the artificial 

intelligence (AI) and human are able to share the SA. 
Exploring the effect of, and opportunities for, distributed 
human-machine situational awareness in en-route 
operations is one of the main objectives of the methodology 
presented herein. 
Instead of automating isolated individual tasks, such as 
conflict detection or coordination, we propose building a 
foundation for automation by developing an intelligent 
situationally aware system. Sharing the same team 
situational awareness (TSA) among ATCO team members 
and AI (Figure 1) will enable the automated system to reach 
the same conclusions as ATCOs when confronted with the 
same problem and to be able to explain the reasoning 
behind those conclusions.  
Previous research has shown that SA will actually improve 
in systems with greater automation as long as it was applied 
to information acquisition and action implementation, as 
compared to automation of cognitive functions, specifically 
information analysis [3]. This means that automation will 
provide greatest benefit if it replaces monitoring tasks 
instead of automating the higher decision-making tasks.  
Other studies have shown that automation can be beneficial 
to maintaining the situational awareness, even on 
intermediate levels of automation [3,4]. On the other hand, 
it has been found that monitoring automation involves 
considerable workload [5,6], therefore, self-monitoring 
automation with graceful degradation characteristics should 
be employed to the greatest degree possible. 
ATCOs work in teams and they share a common SA, often 
called team SA (TSA). Automation tools are mostly 
focused on supporting the individual ATCO whereas many 
of the air traffic control (ATC) functions are a team 
endeavour [7,8]. Higher cognitive functions, such as 
managing team task load or anticipating team member’s 
reactions and capabilities, are very difficult to automate [7]. 
Because of this, automation must be able to share the same 
TSA as the rest of the team. 
In previous SESAR Exploratory Research project BEST, 
ATM-specific ontology was developed for data handling in 
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support of SWIM [9]. Guidelines (aimed at practitioners) 
were produced about how to use ontologies in flexible 
ways to describe meta-data, and how these can be used in 
innovative yet scalable ways. We seek to integrate ideas 
and conclusions of the BEST project with advances in AI 
and ML in order to allow AI to partake in team situational 
awareness. Ontologies developed in BEST will be used as 
a basis for development of knowledge graphs (KG) used 
by the reasoning engine. 
In other industries, ontologies were used in combination 
with reasoning engines to achieve a level of situational 
awareness, e.g. in SAPPHIRE (Situational Awareness and 
Preparedness for Public Health Incidences and Reasoning 
Engines) project [10], which shows that reasoning engines 
using domain-specific ontologies are able to participate in 
TSA. 
Operators, such as ATCOs, working in environment with 
high level of automation show signs of out-of-the-loop 
(OOTL) effect [11–13]. SESAR Exploratory Research 
(ER) project MINIMA has shown that OOTL effect can 
be mitigated by varying the level of automation [14]. To 
mitigate the problem, SESAR ER project AUTOPACE 
proposes improvement in training with emphasis on 
preparing ATCOs for potential system failures and for 
recovering control [15]. While these mitigation measures 
might bear fruit, it is inevitable that OOTL effect will 
always be present at higher levels of automation which 
makes TSA even more important. 
 
2. Vision of AI Situational Awareness 
 
Researchers from different fields have for some time 
realized that a sense of “awareness” of many systems’ 
own situation is an enabler for robust and dependable 
behaviour even when undergoing radical changes in the 
environment and drastically diminished capabilities. This 
insight has recently led to a proliferation of work on self-
awareness and other system properties such as self-
organization, self-configuration, self-optimization, self-
protection, self-healing, etc., which are sometimes 
subsumed under the term “self-*” [16]. 
Achieving low-level situational awareness is trivial, any 
PID controller for example can be considered to have 
some sort of situational awareness (Level 1 in framework 

proposed by [16]), however, to achieve higher levels of SA 
the system needs to make meaningful observations, make 
robust semantic interpretation and meaningful attribution, it 
needs to have appropriate reaction and be aware of its own 
goals and history thereof. Semantic web approach 
(ontologies + rules) to achieving situational awareness is 
not a novel idea, it has been attempted in different forms 
and in different field. In [17], authors propose a “Situation 
Awareness Assistant (SAWA) based on Semantic Web 
technologies that facilitates the development of user-
defined domain knowledge in the form of formal ontologies 
and rule sets and then permits the application of the domain 
knowledge to the monitoring of relevant relations as they 
occur in a situations”. Artificial situation awareness was 
explored in a narrow scope in embedded systems for 
healthcare [18], and in a much wider scope in the defence 
industry for battlefield management [19]. This type of 
broader situational awareness is closest to the function of 
the system as we propose it, that can be found in the 
literature.  
On the other hand, semantic webs and knowledge 
engineering in general are present in the field of ATM for 
some time. Authors in [20] propose an approach for 
knowledge-based IT management of air traffic control 
systems which combines the strengths of formal ontologies 
and Complex Event Processing. Further application of 
knowledge graphs, semantic web, and ontologies in ATM 
can be found in [21–24]. None of these, however, address 
the application of such technologies for achieving artificial 
situational awareness or ensuring transparency of the 
machine-learning systems. 
In current ATC operations each human team member, 
executive or planner ATCO, is aware of the: 

 traffic situation (by looking at the radar screen), 
 their own state (e.g. feeling rested or tired),  
 other team member state (by verbal/non-verbal 

communication), and  
 system state (by inspecting the error messages, 

warning lights etc).  
On the other hand, the system is unaware of the state of the 
ATCOs, it is unaware of the traffic situation, and it has very 
limited awareness of its own state.  
Our vision for the future automation concept of en-route 
ATC operations includes human-machine distributed team 

 
Fig. 1.  Concept of Distributed Situational Awareness for Future Automated Systems 
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SA (TSA) with sector team consisting of executive 
ATCO, planning ATCO, and AI (actors). Actors will be 
able to continually monitor each-other states, with AI 
being aware of the probable human actors’ states via 
analysis of traffic situation. Tasks will be allocated 
dynamically according to actor states, including graceful 
degradation of automation ensuring business continuity. 
According to current task analysis [25], following 
monitoring tasks could be automated just by introducing 
the AI SA into the TSA: 

 Monitoring incoming traffic and projecting future 
flight states. 

 Identifying, analysing, and solving 
entry/transit/exit problems, including 
climbs/descents, with ability to explain solution 
to ATCO in natural or coded language on request; 
warn of unsolved problems. 

 Requesting information from, and providing it to, 
aircraft; maintaining up to date intent information 
for each aircraft. 

 Monitoring conformance of aircraft to planned 
trajectory. 

 Identifying conflicts, detecting ATCO’s actions 
related to conflict solving, and monitoring 
evolution of conflict solution; alert if solution 
applied by ATCO does not lead to conflict 
resolution and explain the reasoning. 

 Identifying opportunities for improvement of 
quality of service. 

 Monitoring adverse weather areas and restricted 
airspace; projecting their evolution. 

Also, this system could be an automated proxy between 
sector team and supervisors by including team state 
reporting, sector state reporting, alerting, and coordination 
on traffic de-complexing. 
Assumptions and key enabling technologies for successful 
development of such a system are: 

 TSA must represent the complete situation with 
all interactions among aircraft, humans and 
systems, including accurate representation of 
system and human states. 

 Essential component of TSA is the ability to 
project future states from current ones. 

 A single actor (machine or human) does not have 
to have complete SA; in this way SA is only 
partial for each actor. 

 Individual SA should overlap to the extent that 
makes the operations safe and practicable. 

 TSA should be distributed among actors in a way 
that favours individual strengths. 

 Data sources and communication infrastructure, 
including datalink, is available. 

 
3. AI Situational Awareness Methodology 

Concept 
 
Our approach combines reasoning engine employing 
predicate logic (first-order logic) based on ATC 
knowledge graph system (including rule-based reasoning) 
with machine learning (ML) approach for prediction and 
estimation. ML will be used at a lower level to predict 
individual probabilistic events (e.g. estimated time over 
waypoint) whereas reasoning engine is used at a higher 
level to draw conclusions from the system state. By 
combining reasoning engine with ML, we believe that it 
will be possible for AI to be ‘aware’ of the situation in a 

manner similar to a human, that is, AI will be able to assess 
complex interactions between objects, draw conclusions, 
explain the reasoning behind those conclusions, and predict 
future system states. 
To enable exploration of the effect of human-machine 
distributed situational awareness, it is necessary first to 
develop a framework for ATC-specific knowledge 
representation (i.e. domain-specific knowledge graph 
system). Knowledge graph, in this context, should not be 
considered as just another form of data encoding but, by 
representing all relevant object attributes, rules, relations, 
axioms etc. in ATC domain, as a basis for inferring new 
knowledge and drawing conclusions about the state of the 
system, both at a level of individual components and on a 
global level. While ATM-specific ontologies have been 
used during past several years for data encoding and 
translation, our approach to automation, combining ML 
with knowledge graph system (including the rule-based 
reasoning engine) for AI situational awareness, is 
completely novel. 
To feed the data into the knowledge graph, a set of 
translators from aeronautical data standards to Resource 
Description Framework (RDF) format will be developed or 
reused from previous projects (e.g. BEST project in SESAR 
ER). Other attributes, relations, rules and axioms will be 
encoded to RDF in cooperation with ATCO experts. 
Reasoning can be done by automatic inference, which is a 
process for filling in the gaps in the ontology, or by running 
a query which looks to answer a specific question. Queries 
will be developed, in cooperation with ATCO experts, for 
each of the monitoring tasks that are to be automated. By 
running these queries in short intervals, a continuous 
monitoring will be achieved. Running queries over large 
stores of triples can be time consuming, therefore 
optimization techniques will be employed to reduce the 
number of triples and hardware will be adapted for the 
purpose (large memory and multiple cores).  
 
4. Concept Assessment 
 
To assess the concept, it will be necessary to determine 
whether the developed system possesses a quality which is 
comparable to the human situational awareness. Certainly, 
artificial SA will not be nowhere nearly as comprehensive 
as human, however, we expect that reaching partial SA will 
be enough to prove the feasibility of the concept. Baseline 
for comparison will first have to be developed by assessing 
ATCO’s SA in a set of given air traffic situations. 

Human SA 

There are several SA assessment tools, which have been 
developed over the years. According to [17] the measures 
can be grouped into three categories:  
a) query techniques, in which the subjects are asked 
directly about their perception of certain aspects of the 
situation: Situation Awareness Global Assessment 
Technique (SAGAT), Situation Present Assessment 
Method (SPAM), Situation Awareness bei Fluglotsen der 
Langstreckenkontrolle im Kontext von Automatisierung 
(SALSA), Situation Awareness Probe S (SPAPS),  
b) rating techniques, in which either the subjects 
themselves, or observers of the subjects, are asked to rate 
SA along a number of dimensions, typically presented in a 
series of scales: Situation Awareness Rating Technique 
(SART), Cranfield Situation Awareness Scale (C-SAS), 
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Situation Awareness Linked Indicators Adapted to Novel 
Tasks (SALIANT), Situation Awareness Behaviorally 
Anchored Rating Scale (SA/BARS), and  
c) performance-based techniques, in which the level of 
SA is inferred from the level of performance. The 
rationale underlying this technique is that good SA is 
needed to achieve a good performance. This might be the 
use of objective measurement tools techniques like eye 
tracking.  
Taking into account the previous existing SA 
measurement tools, [17] developed two specific kinds of 
measurement tools to assess ATCO`s SA in Air Traffic 
Management (ATM):  
1) SA for Shape on-Line (SASHA_L), which is a query 
technique based on existing measure, especially SPAM. 
The new component of this SA assessment tool is, that the 
queries are formulated by a subject matter expert (SME) 
in real-time, taking into account the real scenario as it 
unfolds. Thus, the SME asks a question when he/she 
decides it is pertinent to do so. 
2) SA for SHAPE Questionnaire (SASHA_Q) – a 
questionnaire technique using carefully chosen questions 
that focus on key elements of SA which controllers have 
identified themselves. The SASHA_Q is a post-exercise 
self-rating technique. It consists of ten questions that were 
especially designed by taking into account the views of 
controllers themselves about SA and its indicators.  Both 
measures are primarily concerned with controllers` SA 
when using computer-assistance tools and other forms of 
automation support.  
By assessing SA in ATCO’s it seems reasonable and 
useful to use different kinds of measurement tools as 
proposed by [17]. The use of SASHA_L and SASHA-Q 
in combination with an objective measurement tool like 
eye tracking (to assess perception modes) seems 
appropriate when studying SA in the mentioned context 
of the herein proposed research. 

Artificial SA 

To assess the artificial SA, we formulate our framework 
according to Jantsch and Tammemäe [16]. We shall define 
the system aware of certain characteristics of the 
environment, if three conditions are met: 

1. The data interpretation is meaningful; 
2. The drawn conclusions are robust; and 
3. The reaction of the system is appropriate. [16] 

Based on these three rules, we can define five conditions 
for being aware of the environment and two conditions for 
being aware of itself. For property P, we define following 
conditions related to awareness of said property by the 
system [16]: 

I. The system makes physical measurements or 
observations based on received measurement that are 
used to derive the values of P by means of a 
meaningful semantic interpretation. 
II. The semantic interpretation is robust. 
III. There is a semantic attribution which is 
meaningful. 
IV. The system’s reaction to its perception of P is 
appropriate. 
V. A history of the evolution of the property over 
time is maintained, in particular of the increasing or 
decreasing deviations over time. 

 

As mentioned previously, we also define two conditions for 
being aware of itself [16]: 

A. The system can assess how well it meets all its 
goals, thus it has an understanding which goals should 
be achieved and to which extent they are achieved. 
B. The system can assess how well the goals are 
achieved over time and when its performance is 
improving or deteriorating. 

This framework enables us now to define six levels of SA, 
Table 1. 
 

SA 
Level 

Description 

0 A functional system instinctively reacts to a 
given input always in the same manner; its 
output is a mathematical function of its input. 
If it also fulfills the conditions I – IV, we 
define it to be at Level 0. 

1 An adaptive subject tries to minimize the 
difference between input values and 
corresponding reference values. If it also 
meets conditions I – IV it is aware at level 1. 

2 A self-aware system  
1. is aware of at least one system property 
and one environment property according to 
conditions I – IV and condition A, 
2. it contains an inspection engine that 
periodically derives one integrated 
attribution of the system, and 
3. it computes its actions based on 
(a) the monitored and attributed properties of 
the system and of the environment; 
(b) the attributed expectations on the system 
and on the environment; 
(c) the set of goals set for the system and the 
environment. 

3 A history sensitive self-aware system fulfils 
all requirements of Level 2 and, in addition, 
fulfils the history conditions V and B (thus 
satisfying all seven conditions). 

4 A predictive system is a history sensitive 
self-aware system of Level 3 and, in addition, 
its decision-making process involves a 
simulation engine, that can simulate the 
effects of actions on the environment and on 
the system, thereby predicting future states 
and behaviours of both the system and its 
environment.  

5 In addition to self-awareness, group 
awareness means that the system 
distinguishes between itself, the environment 
and the peer group. The latter is treated 
differently by associating it with peer group 
specific expectations and goals. 

 
Assessment of the SA level can be performed by writing 
SPARQL queries designed to elicit the same information 
such as those that the ATCO will be asked in SASHA_L/Q. 
These queries will be focused on analysing the traffic 
situation in en-route ATC. Additional queries will be 
designed to elicit information about other members of the 
team. The purpose of these queries will be to determine 
whether the system can gain insights into the extent of team 
SA and state of other actors. Overall, this methodology, and 
the concept itself, has not been used before so many 
questions are still unanswered. 
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5. Conclusion 
 
We have presented here a concept for the development of 
the artificial situational awareness system in ATC based 
on combining machine learning modules and reasoning 
over knowledge graphs. The expected benefits of a such 
system is the ability to integrate and cross-check other 
sources of information, detect erroneous information, and 
automate some of the monitoring tasks. 
Remaining research questions are plenty. To what extent 
are human and artificial SA even comparable? What is the 
maximum level of SA that can be obtained with KGs 
and/or reasoning engines? Does the complexity of 
knowledge engineering make benefits of artificial SA 
system irrelevant? How feasible is it to encode all required 
semantics for ATC en-route operations? Is first-order 
logic powerful enough for all types of queries that will be 
needed? Is it safe to include AI situational awareness in 
conjunction with ATCOs in TSA? 
In our future work we hope to answer these questions and 
discover whether the concept of artificial situational 
awareness in air traffic control is feasible.  
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